
Abstract

Modeling User Interfaces in a Functional Language

Antony Alexander Courtney

2004

It is widely recognized that programs with Graphical User Interfaces (GUIs) are

difficult to design and implement. One possible reason for this difficulty is the

lack of any clear formal basis for GUI programming. GUI toolkit libraries are

typically described only informally, in terms of implementation artifacts such as

objects, imperative state and I/O systems.

In this thesis, we develop Fruit, a Functional Reactive User Interface Toolkit.

Fruit is based on Yampa, an adaptation of Functional Reactive Programming (FRP)

to the Arrows computational framework. Yampa has a clear, simple formal se-

mantics based on a synchronous dataflow model of computation. GUIs in Fruit

are defined compositionally using only the Yampa model and formally tractable

mouse, keyboard and picture types. Fruit and Yampa have been implemented as

libraries for Haskell, a purely functional programming language.

This thesis presents the semantics and implementations of Yampa and Fruit,

and shows how they can be used to write concise executable specifications of com-

mon GUI programming idioms and complete GUI programs.

Modeling User Interfaces in a Functional

Language

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Antony Alexander Courtney

Dissertation Director: Professor Paul Hudak

May 2004

Copyright c© 2004 by Antony Alexander Courtney

All rights reserved.

ii

Contents

Acknowledgments ix

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Dissertation Overview . 4

I Foundations 5

2 Yampa: A Synchronous Dataflow Language Embedded in Haskell 6

2.1 Concepts . 6

2.2 Composing Signal Functions . 7

2.2.1 Lifted Functions . 8

2.2.2 Serial Composition . 9

2.2.3 Aggregation and Widening 9

2.3 Synchronization and Concurrency 10

2.3.1 Synchrony and Algebraic Laws 11

2.4 Composing Larger Dataflow Graphs 12

2.5 Events and Event Sources . 14

2.6 Loops and Delays . 15

2.7 History-Sensitive Signal Functions 17

i

2.8 Arrow Syntax . 18

2.9 Switching . 20

2.10 Examples . 21

2.10.1 An Edge Detector . 21

2.10.2 The hold Signal Function . 23

2.10.3 A Bounded Counter . 25

2.11 Animating Signal Functions . 27

2.12 Chapter Summary . 29

3 The Evolution of Yampa 30

3.1 Origins: Fran . 32

3.1.1 Switching in Fran . 33

3.1.2 The User Type . 34

3.1.3 Time and Space Leaks in Fran 34

3.2 From Fran to FRP . 37

3.3 Understanding SOE FRP’s Conceptual Model 39

3.3.1 Limits in SOE FRP’s Expressive Power 41

3.4 Extending SOE FRP with runningIn 42

3.4.1 Difficulties with runningIn 43

3.5 Behaviors that “escape” . 44

3.6 Chapter Summary . 46

4 The Formal Semantics of Yampa 48

4.1 Direct Denotational Semantics . 49

4.2 Operational Semantics . 54

4.3 Derived Combinators . 59

4.4 Chapter Summary . 61

ii

5 Implementing Yampa 62

5.1 Synchronized Stream Processors . 62

5.2 Continuation-Based Implementation 64

5.3 Implementing Primitives . 65

5.4 Encoding Variability . 67

5.5 Simple Dynamic Optimizations . 69

5.6 Chapter Summary . 71

6 Haven: Functional Vector Graphics 72

6.1 Introduction . 72

6.1.1 A Functional Model of Vector Graphics 73

6.2 Basic Concepts . 75

6.2.1 Points and Colors . 75

6.2.2 Regions and Region Algebra 76

6.2.3 Images . 77

6.3 Geometry . 78

6.3.1 Paths . 78

6.3.2 Rectangles . 80

6.3.3 Paths, Regions and Bounding Rectangles 81

6.3.4 Shapes . 82

6.3.5 Transforms . 83

6.4 Rendering Model . 84

6.4.1 Composition Operators . 84

6.4.2 Cropping Images . 85

6.4.3 Pens and Stroking . 86

6.4.4 Fonts and Text . 87

iii

6.5 Layout . 89

6.6 From Images to Pictures: A Rendering Monad 91

6.7 Examples . 93

6.7.1 Sierpinski Gasket . 93

6.7.2 A Logo for Haven . 95

6.8 Chapter Summary . 95

7 Fruit: A Functional GUI Library 97

7.1 Defining GUIs . 97

7.1.1 What is a GUI? . 99

7.1.2 Library GUIs . 99

7.2 The GUIInput Type . 101

7.3 Basic Layout Combinators . 102

7.3.1 Transforming GUIs . 103

7.4 Specifying Layout Using Arrows . 106

7.5 Chapter Summary . 109

8 Dynamic Collections in Yampa 110

8.1 The Need for Dynamic Collections 110

8.2 Parallel Composition and Local State 111

8.3 A First Attempt . 113

8.4 Continuation-Based Switching . 115

8.5 Parallel Switching and Signal Collections 117

8.6 Dynamic Interfaces Example . 119

8.7 Chapter Summary . 121

iv

II Applications 122

9 Proving Properties of Yampa Applications 123

9.1 Preliminaries and Notation . 124

9.1.1 Observing Signal Functions 124

9.1.2 The “always” Quantifier . 125

9.2 An Invariance Theorem . 126

9.3 Example: A Simple Bounded Counter 130

9.3.1 Implementation . 130

9.3.2 A Rudimentary Proof . 131

9.4 Chapter Summary . 138

10 The Model / View / Controller (MVC) Design Pattern in Fruit 139

10.1 “Shallow” MVC: Multiple Camera Views 140

10.1.1 Passive Views . 141

10.1.2 Multiple Active Views . 143

10.2 Model/View/Controller In Fruit . 144

10.2.1 GUI Component Refactoring 145

10.3 Chapter Summary . 148

11 Application Case Studies 149

11.1 A Media Controller . 149

11.2 A Web Browser with Interactive History 152

11.2.1 Basic Components . 154

11.2.2 A History-less Browser . 155

11.2.3 Modeling Interactive History 156

11.3 An Interactive Video Game . 159

v

11.3.1 Game Play . 159

11.3.2 Game Objects . 161

11.3.3 The Game Proper . 164

11.4 Evaluation . 179

11.5 Chapter Summary . 183

III Conclusions and Future Work 184

12 Related Work, Conclusions and Future Work 185

12.1 Related Work . 185

12.1.1 Data Flow Languages . 185

12.1.2 Imperative GUI Toolkits . 187

12.1.3 Functional GUI Toolkits . 188

12.1.4 Constraints . 189

12.1.5 Formal Models of GUIs . 190

12.2 Conclusions . 191

12.3 Future Work . 193

12.3.1 Incremental Implementation 193

12.3.2 Integration with Standard Widget Sets 194

12.3.3 Modeling Systems Software 196

12.3.4 Model-Based Interface Design 196

Bibliography 196

vi

List of Figures

2.1 A Signal Function, SF a b . 7

2.2 Core Arrow Primitives . 8

2.3 Other Arrow Operators . 12

2.4 Arrow loop operator . 15

2.5 Semantics of hold . 18

2.6 Implementation of edge . 22

2.7 Implementation of dHold . 24

2.8 Implementation of boundedCounter 27

3.1 Alternatives for Semantics of Behaviors 35

4.1 Core Primitives of Yampa . 48

4.2 Operational Semantics for Core Yampa 54

4.3 Flawed Semantics for Switching . 59

4.4 Standard Yampa Utility Routines . 60

6.1 Cropping a Monochrome Image to a Path 85

6.2 Stroking a Path with a Pen . 88

6.3 The Sierpinski Gasket . 94

6.4 A Logo for Haven . 96

vii

7.1 ballGUI Specification . 98

7.2 Using besideGUI . 102

8.1 Mozilla Thunderbird Search Interface 112

10.1 Implementation of a view . 141

10.2 Multiple Views . 142

10.3 A Shared Model with Local Editing 147

11.1 Basic Media Controller . 150

11.2 Media Controller Finite State Machine 150

11.3 Media Controller Implementation 150

11.4 A Simple Web Browser . 153

11.5 Screen-shot of Space Invaders . 159

11.6 Dynamic collection of game objects maintained by dpSwitch. . . . 165

11.7 Runtime Heap in Java/Swing Implementation 180

viii

Acknowledgments

My work was funded primarily by a National Science Foundation Graduate Re-

search Fellowship.

I am grateful to my advisor, Paul Hudak, for his constant support and good

advice, and for giving me considerable latitude to pursue new ideas and research

directions.

Conal Elliott, Paul Hudak, John Peterson, Henrik Nilsson and Zhanyong Wan

developed the underlying ideas and early implementations of Fran and Func-

tional Reactive Programming, and participated in lengthy discussions about the

design and semantics of Yampa.

Great credit is due to Magnus Carlsson and Thomas Hallgren for their sem-

inal work on Fudgets, the first genuinely functional user interface library I am

aware of. Their work was a continual source of inspiration and ideas for the work

presented here.

The members of my thesis committee, Paul Hudak, Conal Elliott, John Peter-

son and Zhong Shao, provided essential guidance and valuable feedback on my

talks and papers.

Ross Paterson, Magnus Carlsson, Thomas Hallgren, Conal Elliott and anony-

mous reviewers provided extremely detailed comments and suggestions on the

published papers on which much of this work is based.

ix

I owe a special debt of gratitude to Henrik Nilsson, my direct collaborator on

Yampa. His thorough, methodical work style set an example I continue to aspire

to, and all of my work was greatly improved by his input.

I am also extremely grateful to Valery Trifonov for teaching me formal seman-

tics, and for always having time to give helpful, insightful suggestions in response

to my many questions on a wide range of technical matters.

On a personal note, thanks to my friends Killian, Scott, John, Michael, James,

Wolfgang, Luciana, Stephanie, Rob, Bettina, Rachel, Henrik, Arvind, Valery, Chris,

Stefan, Carsten and Molly for their unfailing friendship, being there for me when

I really needed it, and ensuring I had a wonderful time while in graduate school.

To John, for believing in me and offering generous contributions of hardware on

which all of this work was developed. To my mother for her love, support and

encouragement. To Sally Ann for her companionship in the early years. To San-

dro, for teaching me to program and showing me why computers matter. And to

my rock climbing partners Scott, Jacques, Lara, John, Luciana and Stephanie, for

being such wonderful friends and providing an excellent and necessary diversion

from the demands of graduate school.

x

Chapter 1

Introduction

1.1 Background and Motivation

It is widely recognized that programs with Graphical User Interfaces (GUIs) are

difficult to design and implement [14, 52, 48]. Myers [52] enumerated several rea-

sons why this is the case, addressing both high-level software engineering issues

(such as the need for prototyping and iterative design) and low-level program-

ming problems (such as concurrency). While many of these issues are clearly

endemic to GUI development, the subjective experiences of many practitioners is

that even with the help of state-of-the-art toolkits, GUI programming still seems

extremely complicated and difficult relative to many other programming tasks.

Historically, many difficult programming problems became easier to address

once the theoretical foundations of the problem were understood. To cite just one

example, precedence-sensitive parsers became much easier to implement after the

development of context-free grammars and the Backus Naur Formalism [57]. In

contrast, while some formal models of GUIs have been proposed [17, 30, 16], these

models have been largely divorced from the world of practical GUI toolkits. To

1

see this, we need only ask the question “what is a GUI?” in the context of any

modern GUI toolkit. In all toolkits that we are aware of, the answer is either

entirely informal, or depends on artifacts of the toolkit implementation, such as

objects, imperative state, non-deterministic concurrency or I/O systems, each of

which has an extremely difficult and complicated formal semantics in and of it-

self [1, 15, 32, 66].

This situation lead us to pose the following questions:

• While a formal account of GUIs based on objects, imperative programming,

and I/O systems is clearly sufficient, are such concepts necessary?

• Is there a simpler formal model of GUIs that is still powerful enough to

account for GUIs in general?

To answer these questions, we have developed Fruit (a Functional Reactive User

Interface Toolkit) based on a new formal model of GUIs. Fruit’s foundational

model (called Yampa) is based on two simple concepts: signals, which are functions

from real-valued time to values, and signal functions, which are functions from

signals to signals. GUIs are defined compositionally using only the Yampa model

and simple mouse, keyboard and picture types.

While there are many possible formal models of GUIs, the Fruit model is com-

pelling for a number of reasons:

• The concepts of signal and signal function in the Fruit model have direct ana-

logues in digital circuit design and signal processing. This allows us to bor-

row ideas from these established domains, and also resonates with our own

experience, in which programmers speak of “wiring up” a GUI to describe

writing event handlers.

2

• Fruit specifications are extremely concise. Small interactive GUIs can be writ-

ten with one or two lines of code, with minimal attention to the kind of

boiler-plate that plagues modern GUI toolkits.

• The model is purely declarative. While declarative programming languages

have failed to gain mainstream acceptance, the growing popularity of XML [19]

and interactive, direct-manipulation authoring tools [69] has spawned some-

thing of a resurgence of interest in declarative models of interactive sys-

tems. But if we look at two of the more popular exemplar systems in each of

these areas (the XML User-Interface Language XUL [54] in the first case, and

Macromedia’s Flash [45] in the latter), we find that these systems require

an imperative programming language (JavaScript and ActionScript, respec-

tively) to describe even fairly elementary interactive behaviors that aren’t

accounted for in the declarative modeling part of the system. A consequence

of this arrangement is that automated tools can not easily trace or visualize

how an event handler written in the imperative language for one part of the

application affects other parts, and tools are forced to address the “round

trip” problem [75] – keeping the textual imperative code synchronized with

the declarative model understood by the tool.

• The Fruit model enables a clear account of the connection between the GUI

and the non-GUI aspects of the application, and allows a clear separation

of these aspects using the Model/View/Controller design pattern [42]. The

design and implementation of the MVC pattern in Fruit is explored in detail

in chapter 10.

• The Fruit model makes data flow explicit. As we will discuss in detail in chap-

ter 9, capturing the pattern of data flow relationships explicitly is fundamen-

3

tally useful when reasoning about implementations of graphical interfaces.

1.2 Dissertation Overview

This dissertation is organized into three parts: Foundations, Applications and Con-

clusions.

Part I, Foundations, presents the three libraries developed as part of this dis-

sertation: Yampa – for programming reactive systems in a synchronous dataflow

style, Haven – for creating 2D vector graphics images, and Fruit – for specify-

ing interactive graphical user interfaces using Haven and Yampa. Chapters 2-5

cover the evolution, semantics and implementation of Yampa. Chapter 6 presents

Haven and chapter 7 presents the Fruit GUI toolkit (based on Haven and Yampa).

Chapter 8 describes the challenge of accounting for dynamic user interfaces in a

dataflow programming model, and present our extensions to Yampa to address

this issue.

Part II of this thesis explores applications of Yampa, Haven and Fruit. Chap-

ter 9 demonstrates how we can verify properties of Yampa programs using equa-

tional reasoning and the formal semantics developed in chapter 4. Chapter 10

explores using Fruit to give a precise account of the Model / View / Controller de-

sign pattern in Fruit. Chapter 11 presents a couple of larger example applications

written in Fruit, and contrasts the Fruit approach to user interface development

with traditional imperative toolkits.

Part III summarizes related work, presents our conclusions, and outlines a

number of ideas for future work based on the results presented here.

4

Part I

Foundations

5

Chapter 2

Yampa: A Synchronous Dataflow

Language Embedded in Haskell

Yampa is a a language embedded in Haskell for describing reactive systems. Yampa

is based on ideas from Fran [23, 21] and FRP [78]. This chapter gives a brief, infor-

mal introduction to Yampa; later chapters present the formal details.

2.1 Concepts

Yampa is based on two central concepts: signals and signal functions. A signal is a

function from time to a value:

Signal α = Time → α

Time is continuous, and is represented as a non-negative real number. The type

parameter α specifies the type of values carried by the signal. For example, if

Point is the type of a 2-dimensional point, then the time-varying mouse position

might be represented with a value of type Signal Point .

6

a b

Figure 2.1: A Signal Function, SF a b

A signal function is a function from Signal to Signal :

SF α β = Signal α→ Signal β

When a value of type SF α β is applied to an input signal of type Signal α, it pro-

duces an output signal of type Signal β.

We can think of signals and signal functions using a simple analog or digital

circuit analogy. Line segments (or “wires”) represent signals, with arrowheads

indicating the direction of flow. Boxes (or “components”) represent signal func-

tions, with one signal flowing into the box’s input port and another signal flowing

out of the box’s output port, as shown in figure 2.1.

In order to ensure that signal functions are executable, we require them to

be causal: The output of a signal function at time t is uniquely determined by

the input signal on the interval [0, t]. All primitive signal functions in Yampa are

causal and all combinators for composing signal functions preserve causality.

2.2 Composing Signal Functions

Programming in Yampa consists of defining signal functions that map an input sig-

nal of some type to an output signal of some type. In the Yampa implementation,

signal functions are provided as values of type SF a b, but signals are never exposed

directly to the programmer. Instead, the implementation provides the program-

mer with a small set of primitive signal functions, as well as a set of combinators

7

f

(a) arr f

sf2sf1

(b) sf1 >>> sf2

sf

(c) first sf

Figure 2.2: Core Arrow Primitives

for composing signal functions into larger aggregate signal functions.

The decision to only expose signal functions (and not signals) to the program-

mer was based on experience implementing Fran [20] and FRP [35]. This expe-

rience taught us that allowing signals as first class values leads to “space-time

leaks” [20] in the implementation. In contrast, by defining SF as an abstract

type constructor, and only providing a fixed set of primitives and combinators

for defining signal functions, we can show by structural induction that our imple-

mentation is free of space-time leaks. A full account of the issues and alternatives

related to this design choice is given in the next chapter.

Yampa’s signal functions are an instance of the arrows framework proposed

by Hughes [39], and hence all of the arrow combinators may be used to define

signal functions. The core arrow combinators are shown in figure 2.2. These core

primitives all have simple, precise definitions in terms of the conceptual model

presented in section 2.1. An informal description of these operators is given be-

low; the precise semantics will be covered in chapter 4.

2.2.1 Lifted Functions

The most basic kind of primitive signal function is a lifted function. Lifted func-

tions are constructed with the standard arrow operator arr , which lifts a static

function from a to b to the level of a signal function, mapping a Signal a to

Signal b:

8

arr :: (a → b)→ SF a b

Visually, lifting of some function f is depicted by drawing an ellipse around f , as

shown in figure 2.2(a).

For any function f , arr f denotes pointwise application of f . That is, at every

time t , the output signal of arr f is f applied to the input signal at t :

arr f = λs → λt → f (s t)

This definition of arr gives a concise account of the denotation of arr in terms

of the conceptual model of section 2.1. However, it is important to note that this

definition is for reference purposes only. This definition does not reflect the ac-

tual implementation (described in chapter 5), and because SF is an abstract type

constructor, the programmer may not actually write such definitions directly.

2.2.2 Serial Composition

As shown in figure 2.2(b), two signal functions may be connected in series us-

ing the serial composition operator >>>. Denotationally, serial composition is just

reverse function composition:

(>>>) :: SF a b → SF b c → SF a c
sf1 >>> sf2 = λs → λt → (sf2 (sf1 s)) t

= sf2 ◦ sf1

That is, the overall output of sf1 >>> sf2 at time t is determined by connecting

the overall input signal to sf1 , connecting sf1 ’s output signal to the input signal of

sf2 , and using sf2 ’s output as the overall output signal.

2.2.3 Aggregation and Widening

In Yampa, tuples are used to express aggregation of signals. In the simplest case, a

signal carrying a pair of values is used to represent a pair of distinct signals. The

9

simplest operator that acts on such aggregate signals is the first operator:

first :: SF a b → SF (a, c) (b, c)

As illustrated in figure figure 2.2(c), given some signal function sf ::SF a b, first sf

is a signal function in which the input and output signal types of the argument

sf have been “widened” to accomodate an extra signal line (of type Signal c).

As illustrated in the diagram, first just passes the value of this extra signal line

unmodified from input to output. Formally, we can define first as:

first sf = λs → pairZ (sf (fstZ s)) (sndZ s)

where the following auxiliary functions are simple liftings of standard Haskell

functions for manipulating pairs to the level of signal functions:

pairZ :: Signal a → Signal b → Signal (a, b)
pairZ sa sb = λt → (sa t , sb t)

fstZ :: Signal (a, b)→ Signal a
fstZ = arr fst

sndZ :: Signal (a, b)→ Signal b
sndZ = arr snd

2.3 Synchronization and Concurrency

A crucial aspect of all functional reactive programming systems (including Yampa)

is that they use a synchronous execution model. In general, the value of the out-

put signal from a signal function at time t is determined precisely by the signal

function’s input signal on the interval [0, t]. This is a closed interval, and hence

the output at time t may depend on the value of the input signal at t. That is,

there is no observable “propagation delay” in Yampa1. While we often appeal

to digital circuitry as a useful analogy for thinking about the data flow style of

1There are certain exceptions to this rule. In particular, certain primitive signal functions are
provided by Yampa which deliberately introduce an infinitesimal delay between their input and
output in order to ensure that feedback loops are well-formed. We defer a full discussion of delays
and feedback loops to section 2.6.

10

programming, the absence of any observable propagation delay in Yampa is a

marked difference between Yampa’s programming model and the classical model

of digital hardware circuits2. In the digital circuit model, every circuit element (in-

cluding wires) are considered to have some arbitrary non-zero propagation delay,

and explicit clocking must be introduced to provide synchronization. In contrast,

Yampa presents an idealized model in which signal propagation takes zero logical

time, synchronization is implicit, and delays are introduced explicitly as needed.

Yampa uses a synchronous execution model because the resulting deterministic

model of concurrency yields programs that are vastly easier to reason about than

non-deterministic (i.e. multi-threaded) ones [7].

2.3.1 Synchrony and Algebraic Laws

A corollary of Yampa’s synchronous execution model is that we can derive a num-

ber of useful algebraic laws from the denotational semantics of Yampa. For exam-

ple:

∀ f :: a → b, g :: b → c . arr (g ◦ f) ≡ arr f >>> arr g

The above property states that the lifted form of two composed functions (using

Haskell’s standard function composition operator ◦) is equivalent to serial com-

position (using Yampa’s >>> operator) of the lifting of each individual function.

This is a true identity in the sense that it works for any functions f and g , and

can be applied either right-to-left or left-to-right. Although the implementations

of Yampa on real computers will always be discrete-time approximations of the

2An excellent introduction to digital logic design, including a full account of the classical model
of combinational logic circuits and the implications for synchronous and asynchronous logic de-
sign, is given by Mano [46].

11

sf

(a) second sf

sf1

sf2

(b) sf1 ∗∗∗ sf2

sf1

sf2

(c) sf1 &&& sf2

Figure 2.3: Other Arrow Operators

underlying continuous-time denotational semantics [78], any implementation of

Yampa must ensure that non-divergent terms that are equivalent according to the

denotational semantics are observationally equivalent in the implementation.

Yampa’s synchronous execution model is crucial to enabling such algebraic

identities. If either lifting (using arr) or serial composition (using >>>) introduced

any observable delay between input and output, the above identity would not

hold, as serial composition of two lifted signal functions would have an observ-

ably different propagation delay than a single lifting. Providing an idealized exe-

cution model in which signal propagation takes zero logical time enables the pro-

grammer to focus on the logical relationships between input and output signals,

without worrying about how the internal wiring structure of a particular signal

function might affect the observable behavior.

2.4 Composing Larger Dataflow Graphs

In addition to the core arrow primitives shown in figure 2.2, there are a number

of other arrow operators, some of which are shown in figure 2.3. These other op-

erators enable the programmer to form arbitrary directed data flow graphs from

signal functions. The operators in figure 2.3 have the following types:

second :: SF b c → SF (a, b) (a, c)
(∗∗∗) :: SF a b → SF c d → SF (a, c) (b, d)
(&&&) :: SF a b → SF a c → SF a (b, c)

12

The operator second is just the dual of the primitive arrow operator first (fig-

ure 2.2(c)): given a pair of signal lines, second feeds the second signal line through

its argument while leaving the first signal line untouched.

The operators ∗∗∗ and &&& provide two forms of parallel composition of signal

functions. The ∗∗∗ operator provides true parallel composition in the sense that the

input and output signals from the pair of signal functions being composed are in-

dependent. The &&& operator provides a kind of “broadcast” or “split” operation,

since the same input signal is fed to both of the signal function arguments.

All of the operators of figure 2.3 are derived, in the sense that they can be ex-

pressed using only the core arrow primitives of figure 2.2. The implementations

of each operator in terms of the core primitives are as follows:

second f = arr swap >>> first f >>> arr swap
f ∗∗∗ g = first f >>> second g
f &&& g = arr dup >>> (f ∗∗∗ g)

swap (x , y) = (y , x)
dup x = (x , x)

At first glance, it might appear that the above definitions for ∗∗∗ and &&& are not

true parallel composition, since in the definition of f ∗∗∗ g , the first input signal is

fed to f “before” the second signal is fed to g . However, recall that a key aspect of

Yampa’s synchronization model (section 2.3) is that the primitive operators first

and >>> do not introduce any observable delays. Hence, the observable output of

the f ∗∗∗ g is exactly as if f and g executed in parallel. Becuase of this flexibility,

one could just as easily define ∗∗∗with:

f ∗∗∗ g = second g >>> first f

and the observable behavior would be indistinguishable from the previous defi-

nition.

13

2.5 Events and Event Sources

While some aspects of reactive programs (such as the mouse position) are nat-

urally modeled as continuous signals, other aspects (such as the mouse button

being pressed) are more naturally modeled as discrete events. Conceptually, events

are conditions that “occur instantaneously” – that is, they have no duration. To

model discrete events, we introduce the Event type, isomorphic to Haskell’s Maybe

type:

data Event a = EvOcc a
| NoEvent

A signal function whose output signal carries values of type Event T for some

type T is called an event source. The Event a type represents a possible event occur-

rence. At any time t, sampling a signal of Event a either yields the value EvOcc a

(indicating an event occurence), or NoEvent (indicating that no event occured).

Event Tagging and Mapping Individual event occurrences may carry a value,

which is the purpose of the type parameter a in type Event a. Two operations

are provided for manipulating these values: tagging and mapping, which allow the

programmer to enrich each occurrence with extra information about the occurence

that may be of interest to the observer of the event source: 3

tag :: Event a → b → Event b
fmap :: Event a → (a → b)→ Event b

For example, a mouse button press event has, by default, type Event (), indicating

that it carries no information other than the fact of its occurrence. However, we

could tag each button press event occurrence with the mouse’s current position,

by applying tag point-wise (using arr) to the event source.

3The reason for the name fmap is because Event is an instance of the Haskell’s Functor type
class.

14

sf

(a) loop sf

Figure 2.4: Arrow loop operator

Event mapping (with fmap) applies a static function f (of type (a → b)) to an

(Event a) to obtain an (Event b). As with event tagging, mapping is almost always

done point-wise, by using fmap in conjunction with arr .

Event tagging is really just a special case of mapping that ignores the value

carried in the original occurrence. Tagging is thus easily defined as:

tag e v = fmap e (const v)

where const v is the standard Haskell constant function.

Event Merging Finally, possible event occurrences can be merged with merge:

merge :: Event a → Event a → Event a
merge (EvOcc v1) e2 = (EvOcc v1)
merge NoOcc e2 = e2

The definition of merge specifies that an occurrence is favored over a non-occurrence,

and the first argument is favored if both are occurrences. Like tag and fmap, merge

is typically applied point-wise.

2.6 Loops and Delays

In earlier sections, we have appealed to a digital circuit analogy for thinking about

Yampa programs. In digital circuits, feedback is used to define stateful circuits, i.e.

circuits whose reaction to an input stimulus at time t depends not just on the input

at t, but on some or all of the previous history of the input signal.

Yampa provides a loop operator (illustrated in figure 2.4(a)) which enables the

15

definition of signal functions that accumulate state in a manner analogous to that

of a digital circuit. As in a digital circuit, Yampa’s loop operator works by feedback:

some portion of a signal function’s output is made available as part of the input

signal. Yampa’s loop operator has the following type:

loop :: SF (a, c) (b, c)→ SF a b

The argument to loop is a signal function operating on a pair of signals. The loop

operator arranges for the second half of the signal function’s output signal to be

made available as the second component of the pair of input signals. We defer a

precise definition of the loop operator to the formal semantics (chapter 4). Suffice

it to say that the loop operator, like the other Yampa primitives, does not introduce

any delays; the fed back portion of the input signal at time t is exactly the output

signal at t.

The definition of loop thus enables the programmer to write ill-formed signal

functions such as:

bad :: SF Int Int
bad = loop (arr (λ(x , y)→ (y + 1, y))

The above definition is ill-formed because at any time t, computing a sample value

to use for the fed-back input sample (y) requires evaluating the expression (y +1),

which in turn requires evaluating the expression y itself. Since such a definition

has no least fixed point, the definition is thus a “black hole”, and the above Yampa

program will diverge at runtime.

Returning to the digital circuit analogy, circuits involving feedback are well-

formed precisely because of the presence of propagation delay. The fact that every

circuit element (including wire!) has some finite propagation delay ensures that

the fed-back input at a time t will in fact be the output signal at some time t− ε. It

is the absence of any observable delay in Yampa which causes definitions such as

bad to diverge. To allow the programmer to write useful, well-formed definitions

16

involving feedback, Yampa provides a primitive operator, iPre, that allows the

programmer to introduce infinitesimal delays in to Yampa programs in a delib-

erate, controlled manner. The iPre (“initialized previous element”) primitive has

the following signature:

iPre :: a → SF a a

At time t = 0, sampling the output signal of iPre x will yield the value x . At

times t > 0, sampling the output of iPre x will yield the input signal at time t− ε

(for some implementation-defined, unspecified ε). The previous definition of bad

could thus be rewritten as:

notBad :: SF Int Int
notBad = loop (arr (λ(x , y)→ (y + 1, y) >>> second (iPre 1))

In this version, the use of iPre ensures that the feedback loop is well formed.

Initially (at time t = 0), the use of iPre ensures that the value 1 is used as the fed-

back value y , and hence the output at time t = 0 is 2. At subsequent sample times,

the output at time t will just be the value of y at time t−ε, which will just be 1. Thus

the above definition is observationally equivalent to the signal function constant 2.

While this is clearly a trivial example, in the following sections loops and delays

will be used in conjunction with event sources to construct more interesting signal

functions that can not be expressed without feedback.

2.7 History-Sensitive Signal Functions

Thus far, all of the core primitive signal functions we have presented are instan-

taneous: the value of the output signal at time t depends only on the value of the

input signal at t. However, the Yampa model also provides primitive signal func-

tions that are history-sensitive. Such primitives produce an output signal that may

depend not just on the input signal at t, but at all times on [0, t].

17

t

hold

3
1

5
3

t

1

5
3

t1 t2 t1 t2

Figure 2.5: Semantics of hold

One of the most basic and useful such primitives is the hold primitive:

hold :: a → SF (Event a) a

The hold primitive provides a continuous view of a discrete event source by “latch-

ing” (or holding) the value of the last event occurrence across a period of non-

occurrences, as illustrated in figure 2.5. The graph on the left is a trace of an

Event Int signal over time. We use a vertical line terminated by a circle to indicate

event occurrences; the height of the line indicates the value carried with the oc-

currence. The graph on the right is a trace of the output signal of (hold 3) applied

to the given event source. The signal starts out as 3 (the initial argument to hold).

At time t1, the input signal has an occurrence with value 5. The output signal be-

comes 5 at t1, and remains 5 until the input signal’s next occurrence at t2, and so

on.

2.8 Arrow Syntax

One benefit of using the arrow framework in Yampa is that it allows us to use

Paterson’s arrow notation [61]. Paterson’s syntax (currently implemented as a

preprocessor for Haskell) effectively allows signals to be named, despite signals

not being first class values. This eliminates a substantial amount of plumbing

resulting in much more legible code. In this syntax, an expression denoting a

signal function has the form:

18

proc pat → do

pat1← sfexp1 −≺ exp1

pat2← sfexp2 −≺ exp2

. . .

patn← sfexpn−≺ expn

returnA −≺ exp

This is just syntactic sugar: The arrow notation can be translated into plain Haskell

that makes use of the arrow combinators.

The keyword proc is analogous to the λ in λ-expressions, pat and pati are pat-

terns binding signal variables pointwise by matching on instantaneous signal val-

ues, exp and expi are expressions defining instantaneous signal values, and sfexpi

are expressions denoting signal functions. The idea is that the signal being de-

fined pointwise by each expi is fed into the corresponding signal function sfexpi,

whose output is bound pointwise in pati. The overall input to the signal function

denoted by the proc-expression is bound by pat , and its output signal is defined

by the expression exp. The signal variables bound in the patterns may occur in the

signal value expressions, but not in the signal function expressions (sfexpi). An op-

tional keyword rec, applied to a group of definitions, permits signal variables to

occur in expressions that textually precede the definition of the variable, allowing

recursive definitions (feedback loops). Finally,

let pat = exp

is shorthand for

pat ← identity −≺ exp

where identity is the identity signal function (arr id), allowing binding of instan-

taneous values in a straightforward way.

19

The syntactic sugar is implemented by a preprocessor which expands out the

definitions using only the basic arrow combinators arr , >>>, first , and, if rec is

used, loop.

For a concrete example, consider the following:

sf = proc (a, b)→ do
c1 ← sf1−≺ a
c2 ← sf2−≺ b
c ← sf3−≺ (c1 , c2)
rec

d ← sf4−≺ (b, c, d)
returnA−≺ (d , c)

Here we have bound the resulting signal function to the variable sf , allowing it to

be referred by name. Note the use of the tuple pattern for splitting sf ’s input into

two “named signals”, a and b. Also note the use of tuple expressions for pairing

signals, for example for feeding the pair of signals c1 and c2 to the signal function

sf3 .

2.9 Switching

The structure of a Yampa system may evolve over time. These structural changes

are known as mode switches. This is accomplished through a family of switching

primitives that use events to trigger changes in the connectivity of a system. The

simplest such primitive is switch:

switch ::
SF a (b,Event c)→ (c → SF a b)→ SF a b

switch switches from one subordinate signal function into another when a switch-

ing event occurs. The first argument to switch is an initial embedded signal function.

This embedded signal function produces a pair of output signals. The first output

signal defines the overall output of the switch while the initial signal function is

20

active. The second signal carries the event that will cause the switch to take place.

Once the switching event occurs, switch applies its second argument to the value

carried in the event occurrence and switches into the resulting signal function.

Yampa also includes parallel switching constructs that maintain dynamic col-

lections of signal functions connected in parallel. Signal functions can be added to

or removed from such a collection at runtime in response to events. The first class

status of signal functions in combination with switching over dynamic collections

of signal functions makes Yampa an unusually flexible synchronous dataflow lan-

guage. Yampa’s parallel switching constructs are described in detail in chapter 8.

2.10 Examples

In this section, we present a few basic examples that demonstrate programming

with Yampa. We first present direct implementations of a couple of the utility

signal functions included in the standard Yampa utilities library. We then develop

a simple “bounded counter” signal function that demonstrates the basic design

and implementation techniques used in developing real applications.

The purpose of these examples is to provide a rudimentary introduction to

writing simple Yampa programs. In later chapters (particularly in Part II), a num-

ber of full-scale Yampa applications will be presented in detail.

2.10.1 An Edge Detector

It is often useful to be able to detect so-called “predicate” events, i.e. events that

are described by some boolean expression. For example, we might wish to detect

when the mouse position crosses from the left half of the screen to right half of the

screen. Yampa provides a standard utility signal function edge (a “rising edge”

21

edge =

iPre True aux

b

pb

where
aux (False,True) = EvOcc ()
aux = NoEvent

Figure 2.6: Implementation of edge

detector) for this purpose:

edge :: SF Bool (Event ())

The edge signal function takes a (continuous) signal of boolean values as input and

produces a discrete event on output. An occurence of the output event indicates

that edge has detected a transition from False to True (a rising edge) on its input

signal.

The data flow graph for the implementation of edge is shown in figure 2.6. The

boolean input signal is fed to iPre to produce a delayed version of b (labeled pb).

At any time t, the value of pb is just the value of b at time t − ε. The argument to

iPre specifies the value of pb at time t = 0. Since edge is a rising edge detector (i.e.

sensitive to transitions from False to True), the value True is used as the initial

value. the input signal happens to have the value

The concrete implementation of edge (written using arrows syntax) is:

-- rising edge detector:
edge :: SF Bool (Event ())
edge = proc b → do

22

pb ← iPre True−≺ b
returnA−≺ if ((pb, b) ≡ (False,True))

then EvOcc ()
else NoEvent

The above is a fairly straightforward translation of the data flow graph of fig-

ure 2.6. The only notable difference is that the body of the lifted function aux has

been written as an inline expression fed as the input to returnA on the last line.

Using just the arrows primitives (without the arrows syntax), this example

could be written as:

edge :: SF Bool (Event ())
edge = (iPre True &&& arr id) >>> arr aux

where
aux (False,True) = EvOcc ()
aux = NoEvent

Or, equivalently:

edge = arr dup >>> first (iPre True) >>> arr aux
where

aux (False,True) = EvOcc ()
aux = NoEvent

The latter version is just an in-line expansion of the definition of the definition of

the &&& operator in the first version.

2.10.2 The hold Signal Function

In section 2.7 we described hold , a history-sensitive signal function provided in

the Yampa standard utilities library.

The data flow graph for the implementation of a basic variant of hold, called

dHold (for “delayed” hold) is shown in figure 2.7. The corresponding code follows

directly from the diagram:

dHold :: a → SF (Event a) a
dHold x0 = proc e → do
rec px ← iPre x0−≺ event px id e

23

dHold x0 =

iPre x0aux
pxe

where
aux e px = event px id e

Figure 2.7: Implementation of dHold

returnA−≺ px

The function event , used in the first line of the body of dHold , is just the Event

analog of Haskell’s standard maybe function:

event :: b → (a → b)→ Event a → b
event f (EvOcc x) = f x
event x NoEvent = x

As with the edge implementation in the previous section, the body of the auxiliary

function has been expanded inline in the definition of dHold for concision. The

rec form of the arrows syntactic sugar is used to allow the point-wise sample px

to be used as both the input and output of iPre.

This dHold variant of hold is so named because if an event occurs on the input

signal at time t, this will only be latched to the output signal of dHold at time

t+. Introducting an infinitesimal delay here is often useful, as it means that the

output of dHold can be used directly in some larger feedback loop without the

need to introduce another explicit delay.

The non-delayed version of hold simply defines x as the output signal instead

of px :

-- non-delayed version:

24

hold :: a → SF (Event a) a
hold x0 = proc e → do
rec px ← iPre x0−≺ x

let x = event px id e
returnA−≺ x

Of course, given this definition, dHold could also be implemented simply as:

dHold x0 = hold x0 >>> iPre x0

2.10.3 A Bounded Counter

A useful circuit in the realm of digital electronics is a counter, which increments

a number (stored in some register) in response to some external event (such as a

button being pressed).

We can, of course, also easily develop a basic counter as a Signal Function in

Yampa. The basic counter makes use of accum, another standard Yampa utility

signal function:

accum :: a → SF (Event (a → a)) (Event a)

The accum signal function is similar to hold in the sense that it accumulates a

value internally that is updated in response to input events. However, rather

than merely latching the value carried with the event, accum expects each event

occurence to carry a function that is applied to the current internal value to produce

the next value. On the output side, accum produces an output event signal that

is synchronized with the input event signal, but whose value is a snapshot of

accum’s internal state. If a continuous output signal is needed on the output side,

accum can simply be composed with hold . This idiom is so common, in fact, that

Yampa provides these as standard utilities:

accumHold :: a → SF (Event (a → a)) a
accumHold x0 = accum x0 >>> hold x0

dAccumHold :: a → SF (Event (a → a)) a
dAccumHold x0 = accum x0 >>> dHold x0

25

A basic counter, then, can be implemented simply and directly as follows4:

counter :: Int → SF (Event ()) Int
counter x0 = arr (‘tag ‘incr) >>> accumHold x0

where incr x = x + 1

Note in the above, that incr is a function that is used as a value to tag every input

event occurence. The definition of incr is intended to make this explicit; However,

the definition of counter could be written slightly more concisely by replacing the

use of incr with (+1), making further use of Haskell’s section notation.

To make this example slightly more interesting, we will develop a bounded

counter, which will only increment if the counter’s current value is less than or

equal to some fixed maximum value. We will again appeal to a simple standard

utility function, gate :

gate :: Event a → Bool → Event a
‘gate‘ False = NoEvent

e ‘gate ‘ True = e

Like the other utility functions operating on event signals fmap and tag , gate is

intended to be applied pointwise. However, gate is intended to be applied point-

wise to both an event signal and a boolean signal. When used in this way, gate

acts as a kind of filter that will filter out all events that occur at times when the

corresponding boolean signal is False.

Implementing the bounded counter is thus a simple matter of feeding back

the output of the counter, comparing the counter’s current value with the given

maximum value, and using this pointwise computation to gate the external input

event. The data flow graph for this example is shown in figure 2.8. The corre-

sponding concrete syntax (using arrows syntactic sugar) is as follows:

boundedCounter :: Int → SF (Event ()) Int

4The use of (‘tag ‘incr) instead of just tag incr is because tag is usually used as an infix oper-
ator with the Event argument first. This argument order is almost always more convenient and
readable in larger examples.

26

dHold
x0

x0

tag incrgate

< max

updEincReq

x

boundedCounter x0 max =

accum

Figure 2.8: Implementation of boundedCounter

boundedCounter max = proc incReq → do
rec n ← dAccumHold 0−≺ incCount

let incCount = (incReq ‘gate‘ (n < max)) ‘tag ‘ (+1)
returnA−≺ n

Note in the above that we are using dAccumHold rather than accumHold to ensure

that the feedback is well-formed. Of course, this has the consequence of intro-

ducing an infinitesimal delay between input event occurences and an observable

change in the output signal.

2.11 Animating Signal Functions

Thus far we have seen a number of simple reactive programs realized as signal

functions. One notable omission from these specifications was any explicit men-

tion of the I/O system or a connection to the external world. This is quite deliber-

ate, and is a hallmark of Yampa programming.

Instead of specifying an interactive application as an explicit sequence of I/O

27

actions, the Yampa programmer defines a signal function that transforms an input

signal of some type into an output signal of some type. This programming style

ensures that Yampa programs have a simple, precise denotation independent of

the (typically complex and underspecified) details of the I/O system or the exter-

nal world.

To actually execute a Yampa program we need some way to connect the pro-

gram’s input and output signals to the external world. Yampa provides the func-

tion reactimate (here slightly simplified) for this purpose 5:

reactimate :: IO (DTime, a) -- sense
→ (b → IO ()) -- actuate
→ SF a b
→ IO ()

The first argument to reactimate (sense) is an IO action that will obtain the next

input sample along with the amount of time elapsed (or “delta” time, DTime)

since the previous sample. The second argument (actuate) is a function that, given

an output sample, produces an IO action that will process the output sample in

some way. The third argument is the signal function to be animated. Reactimate

approximates the continuous-time model presented here by performing discrete

sampling of the signal function, invoking sense at the start and actuate at the end

of each time step. In the context of our video game, we use sense and actuate func-

tions which read an input event from the window system and render an image on

the screen, respectively.

5Yampa also provides a slightly more complicated version of this function, reactimateEx , which
allows for more efficient interfacing with the operating system (by allowing sense to perform
blocking I/O), and enables actuate to indicate that the application should terminate.

28

2.12 Chapter Summary

This chapter has presented a brief introduction to Yampa, a library for implement-

ing reactive systems in Haskell based on a synchronous data-flow model of pro-

gramming. Yampa is based on an adaptation of ideas from Fran and FRP to the ar-

rows computational framework proposed by Hughes. We presented a few Yampa

primitives and the arrow combinators, described some important aspects of the

Yampa conceptual model (such as synchrony and tupling of signals), and exam-

ined a number of small examples. We also briefly presented the arrows syntactic

sugar, and showed how this notation could be used to directly transliterate data

flow diagrams into concrete textual syntax.

29

Chapter 3

The Evolution of Yampa

“Functional Reactive Programming” refers to a general conceptual framework for

programming reactive systems. Although they vary in many details, all functional

reactive programming systems share the following essential properties:

purely functional - reactive programs communicate with subprograms and the

external world only via explicit functional interfaces. There is no implicit

global “world” or “heap” available to functions, and functions only compute

values; they may not have any hidden side-effects or perform I/O actions.

first-class time-varying values - a central polymorphic type (called a signal in

Yampa, a behavior in Fran and FRP) defines the complete output of a reac-

tive system over time.

declarative reactivity - a reactive program’s response to external stimuli are ex-

pressed by switching from one time-varying value to another in response to

input events.

There have been many concrete manifestations of functional reactive program-

ming as libraries or stand-alone languages. The first of these systems, which in-

30

troduced the essential ideas of the framework, was Fran [23, 21], implemented

as a library for Haskell. Fran offered a simple, powerful programming model

for specifying reactive programs. Unfortunately, this expressive power came at a

substantial price in terms of performance: it was very easy to write programs that

suffered from serious performance problems at run time (described shortly), and

it proved extremely difficult to provide an implementation of Fran in Haskell that

did not suffer from such problems.

A subsequent system, referred to as FRP or sometimes “SOE FRP”1 was de-

signed to alleviate some of the performance issues of the original Fran imple-

mentation. The key difference between FRP and Fran was that FRP redefined

Fran’s core “Behavior” type. While the FRP design appeared to ameliorate some

of Fran’s performance issues, it turned out to be fundamentally limited in expres-

sive power: a number of programs that could easily be expressed in Fran could

simply not be expressed in FRP. Once this became clear, an attempt was made

to extend the basic FRP design to address this issue. Unfortunately, there were

some practical difficulties in the design and implementation of this extension (to

be described shortly).

Yampa was developed in order to explore an alternative approach to FRP for

embedding functional reactive programming in Haskell, based on the benefit of

experience implementing Fran and FRP. In the concrete implementations of Fran

and FRP, a great deal of effort was devoted to syntactic matters. For example, the

implementations of Fran and FRP contain tens or hundreds of one line type and

function definitions that are simple liftings from the world of static values to the

world of time-varying values. In contrast, Yampa almost completely ignores all

1A reference to the fact that the implementation of this system was first presented in the book
“The Haskell School of Expression” by Paul Hudak.

31

matters of surface syntax, and simply tries to provide a basic set of combinators

that are equivalent in expressive power to (extended) FRP. The end result is that

Yampa is defined by a very small set of primitives with clear, precise semantics,

and also clarifies the distinction between signals and signal functions. Unfortu-

nately, this semantic simplicity comes at a price: the arrows syntactic sugar is

needed to write Yampa programs of even modest size.

This chapter presents the historical background that led to Yampa. We briefly

review Fran, and describe some of Fran’s performance issues and implementation

difficulties. We then present FRP, and discuss informally why FRP’s design might

address one of Fran’s key performance issues. We then present an example appli-

cation that illustrates the limits of FRP’s expressive power, describe the extension

to FRP to address this issue and explore the problems raised by this extension. In

the next chapter, we will present Yampa, and show how it can accommodate some

of the examples that proved troublesome for Fran and FRP.

3.1 Origins: Fran

Fran was the first functional reactive programming system, implemented as a li-

brary for Haskell. Fran was designed around two key polymorphic data types:

behaviors and events.

In Fran, the polymorphic Behavior type is simply a function from time to a

value:

Behavior α = Time → α

Time is continuous, and is represented as a non-negative real number. The type

parameter α specifies the type of values carried by the behavior. For example, if

Point is the type of 2-dimensional points, then the time-varying mouse position

32

might be represented with a value of type Behavior Point .

In Fran, Behaviors are first-class values, and thus may be passed as arguments,

returned as results, stored in data structures, etc. For example, we can define the

following:

wiggle :: Behavior Time
wiggle = sin (5 ∗ time)

In the above example, time is a predefined Behavior (of type Behavior Time), that

represents the current time (in seconds). The Behavior type constructor is defined

as an instance of Haskell’s Num type class, so that the functions sin and (∗) can be

applied to numeric Behaviors. That is, the above is really short-hand for:

wiggle = lift1 sin (lift2 (∗) (constB 5) time)

where liftN lifts a (static) function of arity N to operate on behaviors by pointwise

application. The appropriate type signatures are:

constB :: a → Behavior a
lift1 :: (a → b)→ Behavior a → Behavior b
lift2 :: (a → b → c)→ Behavior a → Behavior b → Behavior c

3.1.1 Switching in Fran

The original exposition of Fran [23] provided declarative reactivity via the untilB

combinator, with the following type signature:

untilB :: Behavior a → Event (Behavior a)→ Behavior a

Informally, b ‘untilB ‘e behaves as b until e occurs, and then switches to the behav-

ior carried with the event occurrence. For example, if lbp is an event source2 that

has occurrences whenever the left mouse button is pressed, then the following

2Throughout this thesis, we distinguish between event sources and individual event occurrences.
An event source is a (time-varying) signal that may have distinct occurrences at discrete points in
time. In a somewhat unconventional choice of terminology, Fran and FRP use the type name Event
to refer to an event source. Yampa uses the type name Event to refer to a possible event occurrence,
which is more consistent with typical usage in event-driven programming and signal processing
literature.

33

definition:

myColB :: Behavior Color
myColB = (constB red) ‘untilB ‘ (lbp−=> constB blue)

is a piece-wise constant behavior whose value is red until the left mouse button is

pressed, at which point its value switches to blue. Note that the operator −=> is a

function that tags every event occurrence with a particular value. Its type is:

(−=>) :: Event a → b → Event b

The untilB switching construct reacts only to the first occurrence of the given event

source. A variation, switch, reacts to every event occurrence.

3.1.2 The User Type

The above example assumed the existence of an event source, lbp, whose occur-

rences indicate the left mouse button being pressed. In actuality, lbp and other

event sources that are derived from user input are defined as functions of User ,

an abstract type representing the totality of user input to the program over time.

So lbp’s actual type signature in Fran is:

lbp :: User → Event ()

This detail will be important in the forthcoming discussion concerning start times,

and the workarounds for time and space leaks implemented in FRP and Yampa.

3.1.3 Time and Space Leaks in Fran

The previous switching example wasn’t particularly interesting, because it merely

switched from one constant behavior to another. Consider the following slightly

more involved example:

lbpCount :: User → Behavior Int
lbpCount u = stepAccum 0 (lbp u−=> (+1))

jCount :: User → Behavior Int

34

lbp

keyPress 'j'

time

rbp

tx ty tz

(a) Input Trace

tx

lbpCount

jCount

counter

tz

5

2

5

7

3

3

(b) Fran Seman-
tics

tx

lbpCount

jCount

counter

tz

5

2

5

7

3

1

(c) FRP Semantics

Figure 3.1: Alternatives for Semantics of Behaviors

jCount u = stepAccum 0 (keyPress u ’j’−=> (+1))

counter :: User → Behavior Int
counter u = lbpCount u ‘untilB ‘ (rbp u−=> jCount u)

The lbpCount and jCount behaviors are defined using Fran’s stepAccum combina-

tor, which has the following type:

stepAccum :: a → Event (a → a)→ Behavior a

This combinator forms a piece-wise constant behavior by applying a function to a

“current value” whenever an event occurs, and then holding this value until the

next event occurrence. In this example, lbpCount acts as a counter that is incre-

mented every time the left mouse button is pressed. Similarly, jCount is defined

as a counter that is incremented every time the ’j’ key is pressed on the keyboard.

The behavior counter is defined using Fran’s untilB switching construct to switch

from lbpCount to jCount after the right mouse button is pressed.

The semantics of this example for a particular set of inputs is illustrated in

figure 3.1. Figure 3.1(a) shows the occurrences of each user input event source

over time. Each event occurrence is indicated by a vertical line with a circle at the

top. Note that at time ty, the right mouse button is pressed, which is the event that

causes a switch in the definition of counter .

Figure 3.1(b) shows the result of sampling each behavior in this example if we

35

observed them at times tx and tz. As we would expect, at each of these two sample

times, the behaviors lbpCount and jCount reflect the total number of occurrences of

the corresponding input event since the start of program execution. The behavior

counter has the same value as lbpCount at time tx (and, in fact, at all times up to

ty). At all times after the switching event occurrence (including time tz), counter

has the same value as jCount .

Unfortunately, this semantics results in a serious operational problem called

a time leak: at certain points in time, an implementation of Fran may need to do

a significant amount of “catch up” computation to compute the output sample

value.

To understand, at least informally, why this example suffers from a time leak,

we need to consider how Fran is implemented. All functional reactive program-

ming systems provide a top-level command (called reactimate by convention),

which will “animate” a particular behavior by repeatedly sampling it, and per-

forming some application-specific action to convey the output sample to the user.

Suppose that reactimate is invoked with counter as an argument. Then at all times

up to ty, counter and lbpCount are active or running, in the sense that they are being

actively sampled. In contrast, executing reactimate counter will not sample the be-

havior jCount before time ty, because at every point in time before ty, the value of

jCount is not needed to compute a sample value for counter . At time ty, counter

switches from lbpCount to jCount . However, at every point in time, the value of

jCount depends on the complete history of user input. Since the implementation

has not been actively sampling jCount before time ty, computing an accurate out-

put sample at ty requires sampling jCount at all previous sample points up to ty.

Furthermore, since the value of jCount at ty depends on the complete history of

key press events up to ty, an implementation must maintain the trace of input

36

events depicted in figure 3.1(a) in memory. Since the amount of time before the

switching event occurs is unbounded, the amount of storage needed to store such

input history is also unbounded, and hence this example will have a space leak as

well as a time leak.

It might seem possible to avoid such time and space leaks simply by eagerly

sampling every behavior that is defined in the program. In fact, an approach

similar to this was attempted in an experimental implementation of Fran that was

used in the FranTk project [68]. Unfortunately, this approach to avoiding time

and space leaks is simply not feasible for a number of reasons. First, particularly

in the context of an implementation based on embedding in a non-strict higher-

order host language, it is simply not feasible to gather sufficient information about

all of the behaviors defined in the program needed to do such eager sampling. But

more significantly, there may be legitimate reasons for the programmer to define

behaviors that produce⊥ as a sample value at certain points in time. In Fran, such

programs will behave correctly as long as the top-level behavior being animated

does not depend on the value of the bottom-producing behavior at those times

when its output samples are ⊥. In contrast, an implementation that attempted

to avoid time leaks by eagerly sampling every behavior in the program would

diverge on such examples.

3.2 From Fran to FRP

To alleviate the time and space leaks of Fran, Hudak developed another imple-

mentation of functional reactive programming embedded in Haskell, known as

“SOE FRP” (or just “FRP”3). FRP differs from Fran by redefining the core Behav-

3A somewhat unfortunate choice of name, since it makes it difficult to distinguish between the
functional reactive programming style and this particular implementation.

37

ior type to take a start time:

Behavior α = Time → Time → α

The first argument is a start time, whereas the second argument is the sample

time. The start time represents an epoch, at which the Behavior begins execution.

More precisely, given a Behavior b, start time tstart, and sample time tsample, the

sample (b tstart tsample) is undefined if tsample < tstart.

The use of start times is particularly significant in the definition of switching in

FRP. Switching combinators (such as untilB) have the same type signature in FRP

as they do in Fran. However, the semantics is quite different. In FRP, the time of

the switching event, te, is used as the start time for the behavior that is switched

in to.

The observable output of counter under FRP semantics is shown in figure 3.1(c).

Note that sampling counter at time tz yields 1 in this semantics. This is because

the switching event (rbp) occurs time ty. Thus ty will be used as the start time for

jCount , the Behavior being switched in to.

At first glance, it might appear somewhat suspicious that the samples for

jCount and counter in figure 3.1(c) disagree at sample time tz. What’s really hap-

pening here is that figure 3.1(c) is somewhat incomplete, since it does not show the

start times of the behaviors being sampled. What’s actually being shown is each

of the behaviors with start times of t0, a global start time for the whole program

(and also the origin of the horizontal axis in the input trace shown in figure 3.1(a)).

Since ty is the time of counter ’s switching event in this input trace, ty is passed as

the start time to jCount to obtain a time-varying value for use after the switch. So

the value of counter after the switch is given by jCount ty, which is distinct from

38

jCount t0 shown in the second row of this table.

Intuitively, it is easy to see why the FRP design avoids Fran’s time and space

leak for the counter example. In Fran the problem was that at the time of the

switching event (ty), the system needed to perform a certain amount of catch-up

computation. This is because, in Fran’s semantics, the value of jCount at time ty

depends on the complete history of user input over the interval [0, ty]. In contrast,

FRP passes ty as the start time to jCount . By definition, jCount can not be given a

sample time before ty, and hence does not depend on user input before ty. Hence,

the value of (jCount ty t) for all t � ty only depends on user input on the interval

[ty, t]; all user input before input ty is irrelevant.

3.3 Understanding SOE FRP’s Conceptual Model

Although SOE FRP addresses the operational issue of time- and space-leaks that

arose in Fran, the change in the semantics of Behaviors has some significant con-

sequences for application programmers. One of the compelling features of Fran

is that systems of ordinary differential equations (which frequently arise in the

natural sciences) could be easily realized as Fran programs. In many cases, the

Fran program for such a system uses the same equations as are used in the un-

derlying mathematical model. For example, the following is a Fran program that

implements a physical model of a ball falling under the force of gravity:

fallBall u = move (vector2XY x y) ball
where

y = y0 + integral v u
y0 = 1
v = integral a u
a = −9.8

39

The code is a fairly direct translation of the laws of motion: the y position is the

integral of velocity, and the velocity is the integral of acceleration due to gravity

(both over time).

The variables that appear in differential equations are implicitly understood

as functions of time. Sometimes variables are written in the more explicit form

y(t) instead of y to emphasize their true type. The semantic model of a Behavior

as a function from time to value thus corresponds directly with the underlying

mathematical notion of a time-varying quantity from differential equations.

This intuitive notion of time-varying values provides the user with a founda-

tion for understanding and writing more complex Fran programs even when they

involve switching or mutually recursive behaviors. For example, here is an ex-

tension of the above program in which the ball “bounces” once by negating the

velocity immediately after the collision event:

bounceBall u = move (vector2XY x y) ball
where

y = y0 + integral v u
y0 = 1
bounce = predicate (y < ∗ 0) u
v = ia ‘untilB ‘ (bounce−=> −ia)
ia = integral a u
a = −9.8

The use of untilB causes the object to bounce once, when the object collides with

the ground. In the original Fran semantics (where behaviors are just time-varying

values), the intended semantics of the above definitions corresponds directly to

the basic differential equations from which they are derived, and all behaviors

can be understood as simple functions from time to value.

The above Fran program can also be written (with minor syntactic differences)

in SOE FRP:

bounceBall :: Beh Picture

40

bounceBall = moveXY x y ball
where

y = y0 + integralB v
y0 = 1
bounce = whenE (y < ∗ 0)
v = ia ‘till ‘ (bounce−=> −ia)
ia = integralB a
a = −9.8

Since behaviors in SOE FRP denote computations that produce signals rather than

just signals, the user must understand that any behavior is effectively restarted

after a switch. In the above example, the “bounce” event will cause the velocity

behavior computation (v) to start over (from 0) at the time of the switch. Part of

the subtlety here is that the start time is critical to understanding the semantics

of a behavior, yet there is no type-level or syntactic distinction between behaviors

that have different start times. As a consequence, expressions such as (y < ∗−0.8)

or −ia may produce different output signals depending on the context in which

they appear.

3.3.1 Limits in SOE FRP’s Expressive Power

In addition to the conceptual subtleties just described, the function-of-start-time

model on its own also has some fundamental limitations in expressive power.

Suppose, for example, that we wish to write an implementation of counter from

sec 3.1.3 with observable behavior as shown in figure 3.1(b). That is, we want

to implement a counter that keeps count of both left mouse button presses and

presses of the ’j’ key. The counter should display the number of left mouse but-

ton presses until the right button is pressed, and then display the count of ’j’ key

presses since the start of the program. There is simply no way to define such a pro-

gram directly in SOE FRP, since the behavior that counts presses of the ’j’ key will

41

only start at the time of the switching event occurrence.

3.4 Extending SOE FRP with runningIn

To work around SOE FRP’s limitation in expressive power, Wan [77] extended

SOE FRP with the runningIn combinator. The runningIn combinator allows the

programmer to start a Behavior at a certain time, and then switch in to this (al-

ready running) behavior at some later time. Conceptually, the runningIn combi-

nator extends FRP with the following new language construct:

letrun
b = b1

in
. . b . .

where b1 is an expression of some Behavior type, and b is bound to a running

version of that behavior. Since embedding in Haskell precludes defining such

new binding constructs, a new combinator was introduced instead:

runningIn :: Behavior a
→ (Behavior a → Behavior b)
→ Behavior b

The idea is that:

b1 ‘runningIn‘ (λb → ...b...)

starts behavior b1 and binds this to b in the body of the function that is the sec-

ond argument to runningIn. The body of the function defines a behavior (of type

Behavior b). Within the body of the function, switching in to behavior b will

switch in to a version of b1 that was started at the same time as the overall behav-

ior.

Wan and Hudak [78] extended the original denotational semantics of Fran with

start times. The meaning function, at gives the meaning of a Behavior in terms of

42

a start time and a sample time:

at[[−]] :: Behavior α→ Time → Time → α

In the above type, the first Time argument is the start time, and the second is the

sample time. Wan gives the denotation of the runningIn construct as:

at[[b ‘runningIn‘ f]] T t = f(λT ′.at[[b]] T) T t

The key to understanding the above semantic definition is to observe that T ′ is

never used in the Behavior that is passed to f . Instead, the definition constructs a

Behavior that is b started at the same time (T) as the overall behavior.

With the addition of runningIn, it becomes possible to express the Fran seman-

tics shown in figure 3.1(b) in SOE FRP. This would be written as follows:

counter ′ u = jCount u ‘runningIn‘
(λjcb → lbpCount u ‘untilB ‘ rbp u−=> jcb)

In this definition, an instance of the behavior jCount is started and bound to the

identifier jcb. Within the body of the lambda expression given as the second ar-

gument to runningIn, all references to jcb refer to this running behavior. As a con-

sequence, the switching event (rbp u) will result in switching in to a count of the

number of presses of the ’j’ key since counter ′ was started.

3.4.1 Difficulties with runningIn

While adding the runningIn combinator to SOE FRP recovers some of Fran’s ex-

pressive power, its addition turns out to raise a number of substantial problems,

both theoretical and practical. This section gives a brief summary (with examples)

of some of the problems that were encountered when attempting to use runningIn

43

to construct large FRP applications.

Recursive Definitions

It is very common to write recursive definitions of behaviors in Fran and FRP.

For example, in the bouncing ball example given in section 3.3, the ball’s position

is determined by its velocity, and its velocity reacts to bounce events, which are

determined by the ball’s position.

In Wan’s implementation of SOE FRP with the runningIn extension, certain

seemingly well-formed recursive definitions resulted in programs that diverged

when executed. For example, behaviors of the form:

let a = ... ‘runningIn‘ (λrb → ...a...)

would loop. Such patterns would occur naturally and commonly in attempting

to express dynamic collections of behaviors, such as a collection of objects in a

simulated world.

Unfortunately, it was never satisfactorily resolved whether the problems with

recursion and runningIn were difficulties with the semantics of runningIn or the

implementation. However, after considering many different examples of pro-

grams involving the combination of runningIn and recursion it quickly became

apparent that there was no clear, simple model of what the semantics of runningIn

should be in the presence of recursion.

3.5 Behaviors that “escape”

Another, purely implementation level issue with runningIn was that runningIn

was implemented by folding a running behavior into the input type of a Behavior.

While Fran’s Behavior type constructor took only a single type parameter, FRP

44

added an extra parameter representing the type of system input. This system

input was fed to all Behaviors in FRP, and served a role similar to Fran’s User

type.

The implementation of runningIn in SOE FRP worked by starting a behavior

and then extending the system input with a handle to this running behavior. Thus

the actual type of the runningIn combinator is:

runningIn :: Beh i a → (Beh (i , a) a → Beh (i , a) b)→ Beh i b

Note that, within the second (function) argument of runningIn, the input type

parameter i has been extended to type (i , a) to account for the running behavior.

Once the system has made the running behavior available on the system input,

the actual “handle” to running behavior is simply an accessor for the appropriate

signal that is present in the system input.

The problem with this approach is that, because behaviors are first class values,

the behaviors that provide handles to running signals may escape their scope. For

example:

b :: Beh i A
a :: Beh i (Beh (i ,A) A)
a = b ‘runningIn‘ (λrb → lift0 rb)

In the above code, rb is really an accessor or “reference” that refers to the run-

ning version of b fed in via the system input to the second argument of runningIn.

Unfortunately, as this example illustrates, it is possible for such references to es-

cape the scope of the function in which they are defined. The problem with such

escaping references is that their use outside of their original scope will refer to

some other running signal that appears in the surrounding context in which the

reference is used, and not the original signal to which the identifier was bound.

45

Lack of Type Information

As discussed in section 3.3, one substantial change in the conceptual model from

Fran to FRP is that the interpretation of Behavior changed from representing a

simple signal (or time-varying value) to a computation – specifically, a function

that produced a signal from a start time. The introduction of runningIn partially

restores access to Fran’s simpler model of signals. However, it does so by pro-

viding accessors to running signals as behaviors, which can be freely mixed with

other behaviors.

Unfortunately, our experience using SOE FRP with runningIn to implement

actual applications was that this overloading of the Behavior type was funda-

mentally confusing. Within any given expression, a subexpression with type

Behavior a might refer to a computation returning a signal, a signal, or some com-

bination of the two. This made it very difficult for the programmer to construct a

mental model of how the program would behave at runtime.

3.6 Chapter Summary

Fran was the first implementation of the functional reactive programming model.

Unfortunately, Fran’s implementation suffered from a number of substantial op-

erational problems, most notably time and space leaks. Hudak’s SOE FRP system

was an attempt to resolve the operational issues of Fran by adopting a different

programming model for Fran’s core Behavior type. Unfortunately, this alterna-

tive model made it impossible to express certain kinds of programs. Attempts at

extending the FRP model to regain Fran’s expressive power (the addition of run-

ningIn) raised its own set of design and implementation issues. This situation lead

us to develop Yampa as an alternative framework for functional reactive program-

46

ming which would retain both the expressive power and conceptual simplicity of

Fran, but which would avoid Fran’s fundamental operational difficulties.

47

Chapter 4

The Formal Semantics of Yampa

Yampa can be considered as a domain-specific language embedded in Haskell [34].

Embedding in Haskell allows us to leverage Haskell’s type system, binding con-

structs, expression syntax and evaluation rules, enabling us to focus on the se-

mantic details of our new language constructs. In this chapter, we define a core

subset of Yampa and present its semantics.

-- Arrow combinators:
arr :: (a → b)→ SF a b
(>>>) :: SF a b → SF b c → SF a c
first :: SF b c → SF (b, d) (c, d)

-- Feedback combinator (from ArrowLoop):
loop :: SF (b, d) (c, d)→ SF b c

-- Initialized delay element:
iPre :: a → SF a a

time :: SF a Time
integral :: (Floating a)⇒ SF a a

-- basic switching combinator:
switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

Figure 4.1: Core Primitives of Yampa

48

4.1 Direct Denotational Semantics

Figure 4.1 gives the Haskell types for the primitive signal functions and combina-

tors that form the core of Yampa.

The direct denotational semantics for Yampa is modeled on the denotational

semantics of Fran [23] and FRP [78]. In order to focus on the semantics of Yampa

constructs, we assume the existence of an underlying denotational semantics for

Haskell expressions in which Haskell function definitions denote continuous par-

tial functions.

Semantic Domains We define T ime to be a non-negative real number:

T ime = R
+

A signal is a continuous function from T ime to a value:

Signal α = T ime→ α

A signal function is a function from Signal to Signal:

SF α β = Signal α → Signal β

We follow the Haskell convention that the function domains are implicitly lifted;

we will need this property to account for the semantics of loop.

Semantic Equations Our denotational semantics simply maps Haskell signal

function expressions to a value in the corresponding domain:

49

[[−]] : 〈sfexp〉 → SF α β

The arrow operators are all straightforward:

[[arr f]] = λs . λt . [[f]] (s t)

[[fa >>> ga]] = ([[ga]] ◦ [[fa]])

[[first fa]] = λs . pairZ ([[fa]] (fstZ s)) (sndZ s)

The semantics of arr relies on our assumption of an underlying denotation for the

Haskell function f . The use of pairZ , fstZ , sndZ in the denotation of first are the

straightforward lifting of the standard operations on tuples to the Signal domain:

pairZ = λsa . λsb .λt . (sa t, sb t)

fstZ = λs . λt . (fst (s t))

sndZ = λs . λt . (snd (s t))

In the above, fst and snd are the standard projection operators over primitive

pairs1

Integration and Time The primitive signal function time provides access to the

current time as a signal:

[[time]] = λs.λt.t

The output signal of the primitive signal function integral is the integration of

1Standard mathematical notation uses numeric subscripts for these projection functions. We
use the explicit names instead to avoid confusion with subscripted variable names, at the possible
cost of introducing confusion between the meta-language and object-language functions of the
same name.

50

its input signal over time. Formally:

[[integral]] = λs.λt.

∫ t

0

s(t)dt

ArrowLoop For signal functions, if fa has type SF (b, d) (c, d), then loop fa

denotes a signal transformer that instantiates fa, and pairs the second half of fa’s

output signal with an external input signal to form fa’s input signal. The output

of loop fa is the first half of fa’s output signal.

Formally, we define loop for signal functions as:

[[loop fa]] =

λs . fstZ (Y(λr.[[fa]](pairZ s (sndZ r))))

where Y is the standard least fixed point operator.

In order to ensure that loops are well-defined, the programmer must ensure

that some signal function on the feedback path is capable of producing an output

sample at time t without observing its input signal at t. In other words, some-

where on the feedback path there must be a signal function that is non-strict at the

current time. There are many ways of introducing such non-strict signal functions.

One possibility is simply to lift a non-strict function (such as const) using arr .

Another way to break causality loops is to use a primitive signal function that is

capable of producing a reaction to its output signal at time t without observing its

input at t by introducing a delay between input and output. In Fran, such delays

were implicitly provided by the integral and switch signal functions. However,

our experience using Yampa for large scale applications revealed numerous cases

where both delayed and non-delayed forms of switching were useful [56, 36], and

other situations where it was convenient to define signal functions using feedback

51

even though there was no obvious place for an integral or switch on the feedback

path. Thus, Yampa provides a primitive delay element, iPre (“initialized” pre-

vious element), which introduces an infinitesimal delay between its input and

output signal:

[[iPre x]] = λs.λt.

[[x]] t � ε

s (t − ε) otherwise

As in the denotation of arr , the denotation of iPre depends on the underlying

denotational semantics of Haskell for the meaning of x . In the above definition,

ε is an infinitesimally small unit of time. Following the approach of Wan and

Hudak [78], the overall meaning of a Yampa program is the meaning of a signal

function expression as this ε approaches 0:

M[[e]] = lim
ε→0

[[e]]

Switching and Event Occurrences Following the semantics of Fran, we define

the following auxiliary function, occ that returns the first event occurrence on an

event signal:

occ : Signal (Event α) → (T ime, α)

occ s = (te, α)

where (s te = Event α) ∧ (∀t ∈ [0, te).s t = NoEvent)

The use of the universal quantifier over an interval of time in the above definition

of occ is not computable. Aside from efficiency concerns, this choice prevents

us from using the denotational semantics given here as the basis for a reference

implementation in a functional language.

52

Given the occ function, the Yampa switching primitive is defined as follows:

[[switch sf0 f]] = λs.λt.

(fstZ bes) t t < te

(timeShift (t− te)([[f]] c)) s t otherwise

where bes = [[sf0]] s

(te, c) = occ (sndZ bes)

The timeShift function used above applies a simple translation time transform

to a signal function:

timeShift = λdt . λsf . (ts (−dt)) ◦ sf ◦ (ts dt)

where ts = λdt . λs . λt . s (t + dt)

This definition of time-transform is based on the general notion of how to apply

a transform to a function used in Pan’s hyper-filters [22]: To transform a function

(in time or in space), apply the transform to the function’s input, and apply the

inverse transform to the resulting output.

The semantics of switching is defined in terms of time transformation in or-

der to ensure temporal modularity. Temporal modularity is the property that all

time-dependent values produced by a signal function are relative to some exter-

nally specified frame of reference, rather than relative to some (arbitrary) choice

of global reference frame / start time. Although we do not currently support a

general time transformation operator in Yampa, temporal modularity enables us

to introduce such an operator in the future. Another advantage of using a time

transform is that there is no arbitrary start time to consider; every signal function

executes in some localized time frame that starts at t = 0.

53

4.2 Operational Semantics

The operational semantics of the primitives of Yampa is shown in figure 4.2. As

we did with the denotational semantics, we assume the existence of an underly-

ing semantics of Haskell expressions. The meta-variables en, f and g (and their

primed forms) range over Haskell expressions, with f and g restricted to expres-

sions of type signal function (SF a b). The meta-variable dt is a real number.

e ⇒ z z
dt,e1−−−−→ 〈f ′, e2〉

e
dt,e1−−−−→ 〈f ′, e2〉

(sf-eval)

arr e1
dt,e2−−−−→ 〈arr e1, e1 e2〉

(sf-arr)

f
dt,fst e1−−−−−−→ 〈f ′, e2〉

first f
dt,e1−−−−→ 〈first f ′, (e2, snd e1)〉

(sf-first)

f
dt,e1−−−−→ 〈f ′, e2〉 g

dt,e2−−−−→ 〈g′, e3〉
comp f g

dt,e1−−−−→ 〈comp f ′ g′, e3〉
(sf-comp)

dtime
dt,e1−−−−→ 〈dtime, dt〉

(sf-dtime)

iPre e1
dt,e2−−−−→ 〈iPre e2, e1〉

(sf-iPre)

x is a fresh variable f
dt,(e1 ,x)−−−−−−→ 〈f ′, e2〉

loop f
dt,e1−−−−→ 〈let x = snd e2 in loop f ′, let x = snd e2 in fst e2〉

(sf-loop)

f
dt,e2−−−−→ 〈f ′, e3〉

switch f e1
dt,e2−−−−→ 〈maybe (switch f ′ e1) e1 (snd e3) , maybe (fst e3) (sample 0 e2 ◦ e1) (snd e3)〉

(sf-switch)

f
dt,e1−−−−→ 〈f ′, e2〉

sample dt e1 f ⇒ e2
(prim-sample)

Figure 4.2: Operational Semantics for Core Yampa

Judgments of the form e ⇒ z refer to the assumed operational semantics of

Haskell, and are read as “expression e evaluates to canonical form z”. Judgments

54

of the form f
dt ,e1−−−−→ 〈f ′, e2〉 are to be read, “the signal function f , when sampled at

delta-time dt with input sample e1 yields output sample e2, and continuation f ′.

Note that the input sample e1 and the output sample e2 are un-evaluated expres-

sions. This is consistent with our reference implementation of Yampa in Haskell,

and is crucial to ensuring that certain loop constructs are well formed.

As in RT-FRP, the overall execution, or “run” of a Yampa program under this

operational semantics is modeled as an infinite sequence of sampling “time steps”.

Execution of each step occurs in the context of a current signal function, f . At each

step, the time since the last step (dt) and an input sample (e1) are obtained from the

environment. These are fed to the evaluation relation to obtain an output sample

for the current time step and a next signal function for use in the next time step.

The output sample is made available to the environment via some mechanism

not specified here, and execution proceeds at the next time step using the “next”

signal function obtained from the evaluation relation of the previous time step.

An essential aspect of Yampa is that signal functions are first-class values. This

point is formalized in the first rule of figure 4.2 (sf-eval). In any context where a

signal function is required, an arbitrary base-language expression may be speci-

fied, so long as it reduces to one of the canonical signal function forms handled by

one of the other rules of figure 4.2.

The next three rules, sf-arr, sf-first and sf-comp, formalize the standard Arrow

operators [39] in the context of signal functions. The rule sf-arr lifts a static func-

tion e to the signal function level by applying the function point-wise to every

input sample. Note the lack of strictness here: neither the input sample nor the

static function nor the resulting expression for the output sample are evaluated.

The rule sf-first widens a signal function to one whose input and output sam-

ple types are pairs. The first component of the input sample (fst e1) is fed to the

55

embedded signal function f to obtain an output sample e2. The overall output

sample is produced by pairing this with the second component of the original

input sample (snd e1).

The rule sf-comp is serial composition, corresponding to the Arrow operator

>>>. The external input sample e1 is fed to f to produce an output sample e2, and

this is used as the input sample for g to obtain the overall output sample e3.

The operational semantics shown in figure 4.2 only specifies a dtime (“delta

time”) primitive, and does not include explicit definitions for time or integral from

figure 4.1. The dtime primitive provides Yampa programs access to the amount of

logical time elapsed since the last input sample, by making the value dt available

as an output sample. In this semantics, time and integral can be defined in terms

of the Yampa primitives dtime , iPre and loop. For example, here is an implemen-

tation of time using these primitives:

time :: SF () Double
time = proc → do

rec dt ← dtime−≺ ()
t ← iPre 0−≺ t + dt

returnA−≺ t

Note that this definition (written using the Arrows syntactic sugar) includes a

recursive binding for t, since t occurs on both the input and output side of an

arrow.

The next two rules, sf-iPre and sf-loop specify the semantics of the delay and

feedback operators. The rule sf-iPre (“initialized” pre) produces as an output sam-

ple the input sample from the previous time step. Note that the input sample for

the current time step, e2, is captured in the signal function continuation for use in

the next time step.

The sf-loop rule specifies Yampa’s feedback operator, loop, which makes part

of the output of a signal function available as input to that signal function. This

56

is similar in spirit to the typical definition of a fixed point combinator in the non-

strict λ-calculus:

fix e → e (fix e)

However, the interplay between the term level evaluation and sampling of signal

functions requires a slightly more involved definition. We introduce a completely

fresh variable identifier, x, that acts as a “placeholder” for the fed-back value, and

pair this with the external input sample e1. This un-evaluated pair is fed as the

input sample to the embedded signal function f to obtain an output sample e2

and signal function continuation f ′. This definition depends crucially on the non-

strictness of the signal function sampling relation, in that the relation must be

capable of producing expressions for the signal function continuation and output

sample without evaluating the placeholder variable x. We will have more to say about

this point shortly when we examine the semantics of switch. To account for the

possibility that x may occur as a free variable in either f ′ or e2, the conclusion of

sf-loop introduces a recursive let binding that binds x to the second component

of the output sample e2 (a pair).

Finally, the rule sf-switch defines Yampa’s switch construct. Recall that switch

has type:2

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

Sampling a switch construct yields term-level expressions for both the signal func-

tion continuation and the output sample. Both of these expressions use the stan-

dard maybe function applied to the possible event occurrence value (snd y) ob-

tained by sampling the embedded signal function (e1). If there is no event occur-

rence, the overall signal function continuation is switch applied to the embedded

2N.B. We’re using the Event/Maybe isomorphism here.

57

signal function’s continuation (e′1). Otherwise, the overall signal function contin-

uation is given by applying function e2 to the value carried with the event occur-

rence. Similarly, the overall output sample from the switch is either taken from

the output sample of the embedded signal function (fst y) if no event occurs, or

is computed by sampling the signal function given by applying e2 to the event

occurrence value. This is consistent with Yampa’s instantaneous switching se-

mantics [56]; if we switch in to a new signal function at time t, the overall output

sample at t results from sampling the new signal function at t.

The instantaneous switching semantics requires that we introduce a term-level

sampling primitive, sample, whose semantics is given by the rule prim-sample. A

sample expression, when evaluated, yields the output sample (y) produced by

sampling the given signal function (e) with the given input sample (x) and delta-

time(dt). We had previously considered an alternative (but flawed!) formulation

of the semantics for switch that does not involve this term-level sample primitive.

The rules for this alternative formulation are shown in figure 4.3. To see why this

formulation is flawed, recall that our definition of sf-loop requires that the sam-

pling relation must be able to produce a signal function continuation and output

sample without evaluating any of its arguments. This is clearly violated by the

two rules of figure 4.3, since the premises require evaluation of the embedded sig-

nal function’s output sample to check for a possible occurrence of the switching

event. We also considered an alternative formulation for loop that did not involve

a “placeholder” variable. However, this required the introduction of a term-level

pull operator to define loop that behaved very much like our sample primitive, yet

still required the term-level sample primitive in the definition of switch.

58

e1
dt,e1−−−−→ 〈e′1, y〉 y ⇒ (z, Nothing)

switch e1 e2
dt,x−−−→ 〈switch e′1 e2, z〉

(sf-switch-ne)

e1
dt,e1−−−−→ 〈e′1, y〉 y ⇒ (, Just z) (e2 z) ⇒ e3 e3

dt,x−−−→ 〈e4, y′〉
switch e1 e2

dt,x−−−→ 〈e4, y′〉
(sf-switch-e)

Figure 4.3: Flawed Semantics for Switching

4.3 Derived Combinators

A number of important and useful functions and signal functions provided by

Yampa are easily defined in terms of the core primitives of Yampa, and hence do

not themselves need to be defined as primitives. Some of these utility combinators

are shown (with their definitions) in figure 4.4.

Most of the utility combinators of figure 4.4 use feedback (loops) to accumulate

state. The most common of these is the hold signal function. The hold signal

function provides a continuous view of a discrete event signal by “latching” (or

holding) the value of the last event occurrence across a period of non-occurrences,

and was described in section 2.7.

Many of the utility signal functions such as hold are provided in both delayed

and non-delayed versions. The names of delayed versions of the utilities are pre-

fixed by a ‘d’: dHold , dAccum, etc. The presence or absence of a delay determines

when the reaction to an event on the input signal is observable on the output sig-

nal. In the non-delayed versions, the reaction to an input event at time t is directly

observable on the output signal at t, whereas in the delayed versions, the reaction

to an event at time t is not observable on the output signal until time t + ε.

59

-- “sample and hold” or “zero order hold”:
dHold :: a → SF (Event a) a
dHold x0 = proc e → do
rec px ← iPre x0−≺ event px id e
returnA−≺ px

-- non-delayed version:
hold :: a → SF (Event a) a
hold x0 = proc e → do
rec px ← iPre x0−≺ x

let x = event px id e
returnA−≺ x

-- accumulating event processor:
accum :: a → SF (Event (a → a)) (Event a)
accum x0 = proc fe → do

rec px ← iPre x0−≺ x
let x = event x (app px) fe

returnA−≺ fe ‘tag ‘ x
where

app :: a → (a → b)→ b
app x f = f x

-- rising edge detector:
edge :: SF Bool (Event ())
edge = proc b → do

pb ← iPre True−≺ b
returnA−≺ if ((pb, b) ≡ (False,True))

then Event ()
else NoEvent

Figure 4.4: Standard Yampa Utility Routines

60

4.4 Chapter Summary

This chapter presented the formal semantics of Yampa, giving both a denotational

and operational semantics. The denotational semantics defines what a Yampa

program “means” in the abstract, whereas the operational semantics determines

how a Yampa program will actually behave at runtime. The semantics presented

here will be used as a basis for implementing Yampa in the next chapter, and for

precise reasoning about Yampa programs in chapter 9.

61

Chapter 5

Implementing Yampa

Elliott [20] described a number of different approaches to functional implemen-

tations of Fran, the first language in the FRP family. One approach is based on

synchronized stream processors. This approach was pursued further by Hudak

and Wan [35, 78], and later also formed the basis for an early implementation

of Yampa. Our current implementation uses continuations, inspired by a sim-

ilar encoding used in the implementation of Fudgets [10]. In this section, we

briefly review the synchronous stream-based implementation, present our alter-

native continuation-based encoding, and describe some simple enhancements to

the continuation-based encoding that enable dynamic optimizations.

5.1 Synchronized Stream Processors

In the stream-based representation of signal functions, signals are represented as

time-stamped streams, and signal functions are just functions from streams to

streams:

type Time = Double
type SP a b = Stream a → Stream b

62

newtype SF a b = SF (SP (Time, a) b)

The Stream type above can be implemented directly as a (lazy) list in Haskell,

as described by Hudak [35].

In the above definition, each signal function (SF a b) is implemented as a

Haskell function from a time-stamped stream of a values to a stream of b values.

Time stamps may be omitted from the output stream because the implementation

is synchronous: at every time step, a signal function will consume exactly one value

from the head of its input stream and produce exactly one value on its output

stream.

While a stream-based implementation is adequate for many purposes, it does

have some substantial deficiencies:

• The synchronous nature of every primitive signal function is a critical re-

quirement, but is not explicit in the implementation structure. That is, we

require that each stream process consume exactly one input sample from its

input stream and produce exactly one output sample on its output stream at

every time step, but this is not explicit in the above type definition.

• At the implementation level, there is no way to identify signal functions that

only react to changes in the input signal. As a consequence, sampling must

occur at every time step, even though the program will only react to spe-

cific input events. Identifying signal functions that only react to changes in

input would enable the implementation to make a blocking call to the op-

erating system until an appropriate event occurs, a substantial performance

improvement.

• The implementation does not retain enough information to do any runtime

optimization of the dataflow graph.

63

• In chapter 8, we will introduce first-class signal function continuations, which

provide a feature analogous to first-class continuations in functional lan-

guages [44, 67]. It does not seem to be possible1 to implement first-class

signal function continuations in a stream-based implementation, since the

connection between a signal function and its input stream is hidden in a

closure.

Since first-class signal function continuations are central to the way we handle

structurally dynamic systems, we consider it essential to use an alternative repre-

sentation of signal functions, presented below.

5.2 Continuation-Based Implementation

The Fudgets [10] graphical user interface toolkit is based on asynchronous stream

processors. In [10], Carlsson and Hallgren present an alternative to the Stream a →
Stream b representation of stream processors based on continuations. Inspired by

this, we have adopted a continuation-based representation for Yampa. However,

since we are working in a synchronous setting, there are substantial differences

from the Fudgets implementation. A similar representation, called “residual be-

haviors”, was explored as a possible implementation for Fran in [20].

We start by explaining a simplified version of the signal function representa-

tion, shown below. Optimizations will be discussed later.

type DTime = Double

data SF a b =
SF{sfTF :: DTime → a → (SF a b, b)}

In this implementation, each signal function is encoded as a transition function.

The transition function takes as arguments the amount of time passed since the

1At least not without stepping outside Haskell.

64

previous time step (DTime), and the current instantaneous value of the input sig-

nal (a). The time deltas are assumed to be strictly greater than 0. We will return to

the question of what the first time delta should be below.

The transition function returns a pair of results:

• a continuation (of type SF a b), determining how the signal function will

behave at the next time step;

• an output sample (of type b), determining the output at the current time step.

The top-level function responsible for animating a signal function (called reactimate)

runs in an infinite loop: It reads an input sample and the time from the external en-

vironment (typically via an I/O action), feeds this sample value and correspond-

ing DTime to the SF ’s transition function to obtain an output sample and signal

function continuation, and writes the output sample to the environment (also typ-

ically via an I/O action). The loop then repeats, but uses the continuation returned

from the transition function on the next iteration.

5.3 Implementing Primitives

Most of the Yampa primitives have clear and simple implementations as continu-

ations. For example:

constant :: b → SF a b
constant b = SF{sfTF = λ → (constant b, b)}
identity :: SF a a
identity = SF{sfTF = λ a → (identity , a)}

Of course these are just special cases of the point-wise lifting operator, arr :

sfArr :: (a → b)→ SF a b
sfArr f = SF{sfTF = λ a → (sfArr f , f a)}

65

The above primitives are all stateless. This fact is obvious from their definitions:

the continuation returned from the transition function is exactly the signal func-

tion being defined. As an example of a stateful signal function, here is a simple

implementation of integral :

integral :: Fractional a ⇒ SF a a
integral = SF{sfTF = sfAux 0}

where
sfAux :: Fractional a ⇒

a → DTime → a → (SF a a, a)
sfAux acc dt a = (SF{sfTF = tf }, acc)

where tf = sfAux (acc + a ∗ realToFrac dt)

The auxiliary function sfAux uses partial application to capture the internal state

of the integral in the accumulator (acc) argument of the transition function.

Many of the higher-order primitives (those that accept signal functions as ar-

guments) are also straightforward. For example serial composition:

(>>>) :: SF a b → SF b c → SF a c
(SF{sfTF = tf1 }) >>> (SF{sfTF = tf2 }) =

SF{sfTF = tf }
where

tf dt a = (sf1 ′ >>> sf2 ′, c)
where

(sf1 ′, b) = tf1 dt a
(sf2 ′, c) = tf2 dt b

This definition follows naturally from the semantic definition of serial composi-

tion given in chapter 4. The transition function (tf) simply feeds the input sample

and DTime to the first signal function (tf1) to obtain sf1 ′ and b, feeds the resulting

sample and DTime to tf2 to obtain sf2 ′ and c, and returns a continuation that is

the composition of the continuations sf1 ′ and sf2 ′, along with the output sample

value c.

66

5.4 Encoding Variability

The continuation-based representation of SF allows for simple, precise opera-

tional definitions for the various combinators. However, this representation, while

simple and general, hides some information that is potentially useful for optimiza-

tion. For example, the concrete representation of SF makes no distinction between

stateless and stateful signal functions.

To enable some simple runtime optimizations (described in the next section),

we add extra constructors to the concrete representation of SF that encode cer-

tain properties of the signal function. We also add a separate type for the initial

continuation, since there is no delta time to be fed in at the very first time step:

data SF a b = SF{sfTF :: a → (SF ′ a b, b)}
data SF ′ a b

= SFGen{sfTF ′ :: DTime → a → (SF ′ a b, b)}
| SFArr{sfTF ′ :: DTime → a → (SF ′ a b, b),

sfAFun :: a → b}
| SFConst{sfTF ′ :: DTime → a → (SF ′ a b, b),

sfCVal :: b}
Each of the constructors still carries a transition function. The interpretation of the

constructors is as follows:

SFGen denotes the most general case of a signal function, where there is no par-

ticular “extra” information known about the transition function.

SFArr denotes a point-wise or “pure” signal function. At any time t, the output

signal at t depends only on the input sample at t (and not on the time since

the last sample). Since a point-wise function is “stateless”, the continuation

is always just the same signal function regardless of the input sample or

DTime.

SFConst denotes a signal function that has “gone constant”. The output value

67

and continuation for a constant signal function do not change from one sam-

ple to the next, regardless of input sample or DTime value.

Formally, we can specify the properties captured by the constructors SFArr

and SFConst by means of two predicates, isArr and isConst, defined with respect

to the original (non-optimized) definition of SF given in section 5.2:

nextSF :: SF a b → DTime → a → SF a b
nextSF sf dt a = fst ((sfTF sf) dt a)

sampleSF :: SF a b → DTime → a → b
sampleSF sf dt a = snd ((sfTF sf) dt a)

isGen(sf) = True

isArr(sf) = ∀a.∀dt .((nextSF sf dt a) = sf) ∧
∀a.∀dt1, dt2.(sampleSF sf dt1a) =

(sampleSF sf dt2a)

isConst(sf) = isArr(sf) ∧
∀a1, a2.∀dt1, dt2.(sampleSF sf dt1a1) =

(sampleSF sf dt2a2)

The first part of the conjunction for isArr asserts that sf ’s continuation is sf it-

self. The second part asserts that the sample value is the same regardless of the

time delta (dt) between samples. The predicate isConst extends isArr with the

requirement that the sample value is independent of delta time or input sample.

Since the first part of isArr specifies that the same signal function is returned

as the continuation for the next time step, it follows trivially by induction that

isArr and isConst will hold for all subsequent samples of a signal function, and

that same value will be returned for all subsequent samples of a constant signal

function. Also note that the following implications hold:

isConst(sf) =⇒ isArr(sf) =⇒ isGen(sf)

68

Making the variability of signal functions explicit in the constructor enables

two key optimizations:

• At the level where reactimate interacts with the operating system, knowing

that a signal function is SFConst or SFArr makes it possible to avoid redun-

dant polling. For example, a signal function with variability SFArr reacts

only to changes in its input signal, not the progression of time. This enables

reactimate to make a blocking call to the operating system while waiting for

an input sample, thus avoiding redundant polling. At present, the utility of

this is limited, but the idea could be carried further by refining the construc-

tors.

• The information about signal functions encoded in each of these construc-

tors enables certain dynamic optimizations to the dataflow graph, based on

some simple algebraic identities described in the next section.

5.5 Simple Dynamic Optimizations

As a signal function is animated, every signal function in the dataflow graph re-

turns a new continuation at every time step. Encoding variability information in

constructors enables the implementation to simplify the data flow graph if the

graph reaches certain states as it is animated. For example, consider the Yampa

primitive once:

once :: SF (Event a) (Event a)

This is a stateful filter that will only pass the first occurrence of its input signal to

its output signal. Although the transition function for once has variability SFGen

at initialization time, after the input signal has had an event occurrence, the con-

tinuation returned by once will be equivalent to constant NoEvent , with variability

69

SFConst , and will therefore have no subsequent occurrences.

Such information can be used to optimize the dataflow graph dynamically by

exploiting simple algebraic identities. For example, our implementation of serial

composition exploits the following identities:

sf >>> constant c = constant c
constant c >>> arr f = constant (f c)
arr f >>> arr g = arr (g ◦ f)

Our optimized implementation of serial composition uses pattern matching to

identify the above cases; the implementation follows directly from the above iden-

tities, with a default case to be applied when none of the above optimizations are

applicable.

We also provide optimized versions of some of the other wiring combinators,

such as first , using the identities:

first (constant b) = arr (λ(, c)→ (b, c))
(first (arr f)) = arr (λ(a, c)→ (f a, c))

One special case that we would have liked to encode in our constructors was SFId ,

to indicate the special case of the lifted identity function, arr id . For example,

consider the signal function

initially :: a → SF a a

that behaves as the identity function, except at the instant t = 0, when its first

argument (the initial value) is used as the output sample. If we could capture the

fact that a signal function has become (arr id) in the representation of SF ′, then

we could exploit identities such as:

first (arr id) = arr id

Unfortunately, it appears that we would need dependent types to exploit such a

constructor, since the type of the transition function (sfTF′) is too general. We

could potentially keep around an extra function as a “proof” that we can perform

the required coercions, but then the resulting code is no more efficient than using

70

SFArr in the first place.

One last point is that we must be careful when propagating variability infor-

mation. For example, even if both arguments to a switch are SFArr , the resulting

signal function is still SFGen. This is because switch in itself is a stateful operation.

We have explored adding another constructor to SF ′ that basically would capture

the case that something could be SFArr for a while. This would yield more oppor-

tunities for blocking I/O. However, it is not part of the current implementation.

5.6 Chapter Summary

This chapter presented our implementation of Yampa. Our implementation is

based directly on the operational semantics of chapter 4. We also described a

number of dynamic runtime optimizations that we have implemented. These op-

timizations are based on using an explicit constructor representation to encode

information about the “variability” of signal functions when it is known, and ex-

ploiting laws about composition of signal functions of known variability.

71

Chapter 6

Haven: Functional Vector Graphics

6.1 Introduction

A fundamental component of every Graphical User Interface system is, of course,

graphics. This chapter presents Haven, a library for 2D vector graphics in Haskell.

Haven provides the graphical primitives that form the basis of the Fruit GUI

toolkit.

What is Vector Graphics? Most 2D graphics libraries provide a bitmap or raster

model of graphics. The raster model of graphics implicitly assumes that the ren-

dering area is comprised of a discrete two-dimensional array of pixels of finite

size. While adequate for many tasks, the raster model has a number of substan-

tial flaws. Most notably, the model is resolution dependent: programs implicitly

depend on a particular hardware screen resolution (pixels per unit area). Chang-

ing the screen resolution will result in either the graphics being rendered at the

wrong size or in undesirable rendering artifacts such as “jaggies” – jagged edges

that appear on what should be rendered as a spatially continuous curve.

72

An alternative to the raster model of graphics is vector graphics. In the vec-

tor graphics model, geometric primitives are represented by paths that capture

the idealized geometry of straight or curved shapes that the program wishes to

display. The units used in the model are resolution-independent points that cor-

respond directly with continuous physical spatial units (mm, inches, etc.) instead

of discrete numbers of screen pixels. The most well-known instances of the vector

graphics model are the Adobe PostScript language [3] and PDF file format [4]. The

vector graphics model is also used by many popular drawing tools, such as Adobe

Illustrator [2]) and some APIs, such as Java2D [29] and MacOS X’s Quartz [5].

Why Vector Graphics? One of the goals of Fruit is to provide an abstract formal

model of GUIs that is independent of any particular implementation. The primary

advantage of vector graphics over raster graphics is that resolution independence

makes the model independent of the underlying display hardware and rendering

implementation.

6.1.1 A Functional Model of Vector Graphics

As noted, there are already libraries available that provide a vector model of

graphics. However, all of these libraries are implemented in imperative program-

ming languages, such as C or Java, and present a programming interface heavily

biased towards the imperative programming model. For example, most vector

graphics libraries use global mutable state to maintain various rendering param-

eters, such as the current transform or current paint color.

Since we wish to provide an implementation-independent model of GUIs, we

want an underlying graphics model in which images to be displayed are simply

values in a suitable semantic domain. To meet this goal, we developed a functional

73

model of vector graphics.

Of course, there are many possible models we could have developed. Since

our primary aim was to provide a model with a simple, precise denotational se-

mantics, every effort was made to distill the model down to a small set of simple

yet general primitives that can be composed to define many common visual ef-

fects. So, for example, the Haven model does not provide a single primitive for

producing an image of a shape filled with a particular solid color. Instead, this is

expressed by applying the crop function to an infinite monochrome image of the

desired color. The advantage of this approach is that crop is a much more general

operation than a “fill” operator, and may be applied to sampled bitmap images,

linearly interpolated color gradients, other cropped images, etc.

In the world of 2D image synthesis for functional languages, Pan [22] provides

a concise, general model of spatially continuous 2D images. Pan is based on the

idea of providing the programmer direct access to the functional model of images

as functions of type Point → Color. The programmer can specify images simply

by defining and composing functions of this type. Pan is implemented using a

staged compilation technique, in which a definition of a Pan image (written in

Haskell) is used to generate a C program, which in turn renders the desired image.

Unfortunately, Pan’s off-line implementation model makes it unsuitable for di-

rect use as the graphics layer of an interactive GUI toolkit. Furthermore, although

Pan provides spatially continuous images and a basic region algebra, there are

some important aspects of the vector graphics model (such as computing a tight

bounding rectangle of an arbitrary region) that Pan does not support.

Haven is a Haskell library that provides a functional model of 2D vector graph-

ics geometry and images suitable for interactive use. Unlike Pan, Haven can be

implemented efficiently without resorting to a distinct code generation or com-

74

pilation step during image rendering. However, Haven sacrifices some of Pan’s

generality and expressive power to achieve this. While Pan allows the program-

mer to specify images and regions directly in terms of their denotation as func-

tions, Haven provides a more limited set of primitives for composing images and

regions from outline paths and constructive area geometry.

This chapter presents the functional programming interface to the Haven li-

brary. In many cases Haskell is used as a meta-language to specify the semantics

of images and regions. However, these are reference definitions only. In all cases,

we have chosen to give definitions that emphasize simplicity and clarity over con-

cerns about efficiency. Haven appeals to Pan’s semantic model wherever possible,

but makes certain aspects of this model abstract and augments the model where

necessary to offer support for paths and rectilinear layouts.

6.2 Basic Concepts

This section presents the basic types and functions that form the core of the Haven

library.

6.2.1 Points and Colors

We use Pan’s definitions of points and colors:

type Point = (Float ,Float)
type Color = (Frac,Frac,Frac,Frac) -- RGBA

A Point is an ordered pair of real numbers that identifies a point in continuous 2D

space. A Color is a quadruple giving the intensities of each color channel, includ-

ing an alpha channel representing opacity. As in Pan, we assume Frac represents

a real number on the interval [0, 1], and use pre-multiplied alpha values [70]. We

75

give the following definitions of some useful values and functions on points and

colors:

origin = (0, 0)

ptX (x ,) = x
ptY (, y) = y

invisible :: Color
invisible = (0, 0, 0, 0)

-- blend two colors, using alpha compositing rules:
colorBlend :: Color → Color → Color
colorBlend (r1 , g1 , b1 , a1) (r2 , g2 , b2 , a2) =

(h r1 r2 , h g1 g2 , h b1 b2 , h a1 a2)
where

h x1 x2 = x1 + (1− a1) ∗ x2

6.2.2 Regions and Region Algebra

A region is a set of points. Again following Pan, Haven uses the standard identifi-

cation of regions with their characteristic functions [35, 22]:

type Region = Point → Bool -- abstract

However, Region is an abstract type. Values of abstract types can not be con-

structed or used directly; instead, the implementation provides a finite set of func-

tions for creating and manipulating values of the type.1

The most fundamental operation on regions is testing whether a Point is in a

region:

inRegion :: Point → Region → Bool
inRegion pt r = r pt

A primitive Region is constructed by specifying a Path that specifies the outline

of the region. The functions for defining paths and obtaining regions from paths

will be described in section 6.3.
1In Haskell, abstract types are implemented by declaring a newtype, and then only exporting

the type name but not the constructor from the implementation module.

76

Standard set operations are provided for defining new regions from existing

regions:

regUnion :: Region → Region → Region
regUnion r1 r2 = λpt → (r1 pt) ∨ (r2 pt)

regIntersect :: Region → Region → Region
regIntersect r1 r2 = λpt → (r1 pt) ∧ (r2 pt)

A couple of useful regions are the empty and infinite regions:

regEmpty :: Region
regEmpty = const False

-- the infinite region:
regInf :: Region
regInf = const True

6.2.3 Images

As in Pan, an Image is a function from continuous 2D space to colors. However, we

extend this basic definition with an optional bounding frame that delimits a region

of interest within the image.

type Image = (Point → Color ,Region) -- abstract

As with regions, Image is abstract. In this section, we present a few simple im-

age constructors and some basic operations on images. Later we will see how to

construct images from paths to produce filled shapes and other common effects.

A useful operation on an Image is to recover its bounding frame:

imgFrame :: Image → Region
imgFrame (, frame) = frame

Bounding frames will be used later when composing images spatially, and are

also used in the definition of image sampling.

Sampling is perhaps the most fundamental operation on an Image. Images are

considered to be transparent when sampled outside of their frame:

imgSample :: Image → Point → Color
imgSample (imgD , frame) pt =

77

if (pt ‘inRegion‘ frame) then imgD pt else invisible

The simplest image, of course, is the empty image:

imgEmpty :: Image
imgEmpty = (⊥, regEmpty)

Despite the use of⊥ for the first (function) component of imgEmpty , the definition

of imgSample ensures that sampling the empty image is always well-defined, since

imgEmpty’s bounding frame (regEmpty) ensures that the the predicate tested in the

body of imgSample is always False.

A very basic Image constructor is imgMonochrome, which produces an infinite

image of a single color:

imgMonochrome :: Color → Image
imgMonochrome c = (const c, regInf)

6.3 Geometry

Haven provides a small set of primitives for composing regions from straight and

curved segments. This section presents the geometry primitives used to define

regions, along with some other standard geometry types (such as rectangles) that

are useful for layout.

6.3.1 Paths

Paths provide a very general notion of 2D geometry based on outlines. These out-

lines may be composed of straight line segments, smoothly curved segments, or

some combination. Paths may be concave, convex, or have arbitrarily complicated

self-intersections.

More precisely, a Path is a set of (disconnected) sub-paths:

data Path = Path [SubPath]

78

Note that although we are using the Haskell convention of representing the sub-

paths in a Path as a list, this is really a set; ordering of sub-paths within a path is

not significant.

A SubPath always begins at a Point and consists of a sequence of straight or

curved segments:

data SubPath = SubPath Point [Segment]

A Segment is either a straight line segment, a second-order (quadratic) curved

segment, or a cubic Beziér curve segment:

data Segment = LineTo Point
| QuadTo Point Point
| CubicTo Point Point Point

Each segment begins at a starting point, P0. In the representation used here, this

starting point is not an explicit part of the Segment . Instead, the starting point for a

segment is either the starting point of the SubPath (for the first segment in the sub-

path),or the endpoint of the previous Segment in the SubPath. The QuadTo con-

structor includes an off-segment control point that affects the shape of the curve;

the CubicTo constructor uses two such control points. In all constructors, the final

Point argument gives the endpoint of the segment, which is always considered to

lie on the segment.

A SubPath may intersect itself in arbitrary ways, and may be open or closed. A

SubPath is said to be closed if its starting point and the endpoint of its final segment

are the same.

Haven provides a number of convenience routines for specifying paths con-

structively, with the following interface:

pathEmpty :: Path
pathEmpty = Path []

pathMoveTo :: Path → Point → Path
pathMoveTo (Path sps) pt = Path ((SubPath pt []) : sps)

79

pathLineTo :: Path → Point → Path
pathLineTo (Path []) = error "pathLineTo without preceding moveto"
pathLineTo (Path ((SubPath p0 segs) : sps)) pt =

Path ((SubPath p0 (segs ++ [LineTo pt])) : sps)

pathClose :: Path → Path
pathClose (Path []) = error "pathClose on non-open path"
pathClose (Path ((SubPath p0 segs) : sps)) =

Path ((SubPath p0 (segs ++ [LineTo p0])) : sps)

pathQuadCurveTo :: Path → Point → Point → Path
pathQuadCurveTo (Path []) =

error "pathQuadCurveTo without preceding moveto"
pathQuadCurveTo (Path ((SubPath p0 segs) : sps)) cpt pt =

Path ((SubPath p0 (segs ++ [QuadTo cpt pt])) : sps)

pathCubicCurveTo :: Path → Point → Point → Point → Path
pathCubicCurveTo (Path []) =

error "pathCubicCurveTo without preceding moveto"
pathCubicCurveTo (Path ((SubPath p0 segs) : sps)) cpt0 cpt1 pt =

Path ((SubPath p0 (segs ++ [CubicTo cpt0 cpt1 pt])) : sps)

6.3.2 Rectangles

Although most common shapes can be precisely represented as paths or sub-

paths, it is sometimes useful to know that a sub-path represents a shape that satis-

fies some well-defined set of invariants. Haven provides explicit representations

for such geometric types, and makes it is easy to project values of such types into

their corresponding path representation.

One such type that Haven defines is the Rectangle. A Rectangle is defined as a

Point that specifies the upper-left corner of the rectangle, along with measures of

the rectangle’s width and height (measured in resolution-independent points).

type Rectangle = (Point ,Dist ,Dist)

The edges of a rectangle always lie parallel to the x- and y-axes.

80

6.3.3 Paths, Regions and Bounding Rectangles

An essential aspect of the vector graphics model is that there is a close relationship

between regions and paths. With the exception of the infinite and empty regions,

all other regions are defined as the interior of a closed path, or derived from set

operations applied to other regions.

The interior region of a closed path is determined with pathInterior :

pathInterior :: Path → Region

The algorithm used to implement pathInterior is not specified here. It is expected

that an implementation will use the standard “Nonzero Winding Number Rule” [4].

This algorithm is based on the idea of extending a ray from each point to infinity,

examining the places where the ray intersects segments of the path, and consider-

ing the direction of the particular segment at each intersection.

The close relationship between paths and regions enables the implementation

to provide access to the outline of any finite region:

regOutline :: Region → Maybe Path

For any finite region r , regOutline r returns Just p, where p is a Path that specifies

the outline of the region. The value Nothing is returned for the infinite region.

Note that some set operations involving the infinite region may yield finite

regions, while others will not. For example, for any path p, the implementation

must obey:

regOutline (pathInterior p ‘regIntersect ‘ regInf) ≡ Just p

On the other hand, subtracting a finite region from an infinite region is still an

infinite region:

regOutline (regInf ‘regDiff ‘ pathInterior p) ≡ Nothing

Finally, another important and useful operation on paths is computing a tight

bounding rectangle (or bounds) for a path:

81

pathBounds :: Path → Rectangle

The result of pathBounds p for any path p is the smallest rectangle r whose interior

contains all points that are in the interior of p.

We can easily define a function to obtain the bounds of an image’s bounding

frame, if the bounding frame is not infinite:

imgBounds :: Image → Maybe Rectangle
imgBounds img = fmap pathBounds ((regOutline ◦ imgFrame) img)

6.3.4 Shapes

Specialized geometric types such as Rectangle determine a corresponding Path,

every Path determines a corresponding Region, and every non-infinite Region de-

termines a Path .

While precise, it would be somewhat inconvenient to force the user to, for ex-

ample, coerce a Rectangle into a Path before drawing its outline. For convenience,

Haven uses the Shape type class to represent values that determine regions:

class Shape a where
region :: a → Region
outline :: a → Maybe Path

There are suitable instances of Shape for specialized geometric types such as Rectangle,

as well as for Path and Region:

instance Shape Rectangle where
outline = Just ◦ rectPath
region = rectRegion

instance Shape Path where
outline = Just
region = pathInterior

instance Shape Region where
region = id
outline = regOutline

82

For convenience, most Haven primitives that require a Region or Path are defined

to take any Shape.

6.3.5 Transforms

Haven provides a Transform type that represents a mapping from points to points:

type Transform = (Point → Point ,Point → Point) -- abstract

A Transform is represented with a pair of functions: the transform itself and its

inverse. Haven restricts transforms to affine transforms (any combination of rotate,

translate, scale and shear operations):

scale :: Double → Double → Transform

shear :: Double → Double → Transform

translate :: Vector → Transform

-- rotate by a given angle
rotate :: Double → Transform

-- rotate by a given angle about a certain point:
rotateAbout :: Double → Point → Transform

Restricting transforms to affine transforms ensures that every transform has an

inverse:

inverse :: Transform → Transform
inverse (t , invt) = (invt , t)

Transforms can be composed with compTransform:

compTransform :: Transform → Transform → Transform
compTransform (t1 , it1) (t2 , it2) = (t1 ◦ t2 , it2 ◦ it1)

Since there are many types for which it makes sense to apply transforms, Haven

provides a Transformable type class:

class Transformable a where
(%$) :: Transform → a → a

Instances of Transformable are defined for all of the standard types:

instance Transformable Point where
(%$) = pointTransform

83

instance Transformable Path where
(%$) = pathTransform

instance Transformable Image where
(%$) = imgTransform

The definition of pointTransform simply applies the transform function to the

given Point . Transforming a Path just involves mapping pointTransform over all

points in the path. As in Pan, image transformation simply involves applying the

inverse transform to a sample point before sampling the image.

6.4 Rendering Model

The previous sections defined Haven’s model of images and path-based geome-

try. This section presents Haven’s operator for composing and cropping images

and for stroking paths. Haven differs from other vector graphics languages and

libraries in its emphasis on providing a minimal, general set of primitives that can

be composed to define more complex images.

6.4.1 Composition Operators

Images can be composed by placing one image over another with the over opera-

tor:

imgOver :: Image → Image → Image
imgOver imgA imgB =

(λpt → colorBlend (imgSample imgA pt) (imgSample imgB pt),
imgFrame imgA ‘regUnion‘ imgFrame imgB)

Note that in the above definition, the frame of the resulting image is the union of

the frames of the images being composed.

84

(a) Crop
mask (closed
Beziér path)

(b) Monochrome Image (c) Cropped
Image

Figure 6.1: Cropping a Monochrome Image to a Path

6.4.2 Cropping Images

Most vector graphics languages or libraries provide a primitive operation for fill-

ing a path in some particular color. Haven does not provide such a primitive,

although the operation is provided as a utility function (for programmer conve-

nience). Instead, Haven provides a general purpose crop operator, which may be

used to restrict an image to a particular shape (the crop mask):

imgCrop :: (Shape a)⇒ a → Image → Image

Cropping of a monochrome image with imgCrop is illustrated in figure 6.1. The

original monochrome image in figure 6.1(b) has an infinite bounding frame. How-

ever, after applying the crop operation, the resulting image will have a bounding

frame that corresponds to the region determined by the path in figure 6.1(a), as

illustrated by the dashed line in figure 6.1(c).

How, then, should we define imgCrop? In particular, what is the relationship

between the crop mask and the source image’s bounding frame? Two require-

ments seem natural:

• If the crop mask is entirely contained in (i.e. is a strict subset of) the frame

of the image being cropped, then the frame of the resulting image should be

85

the crop mask:

imgFrame (imgCrop m img) ≡ m

• If the image frame is a subset of the crop mask, then:

imgCrop m img ≡ img

These two requirements are satisfied by defining the result image’s bounding

frame as the intersection of the crop mask and source image’s bounding frame:

imgCrop s (imgD , iframe) = (imgD , region s ‘regIntersect ‘ iframe)

Although Haven does not provide “path fill” as a primitive operation, it is easy to

define this using imgCrop and imgMonochrome:

imgFill :: (Shape a)⇒ Color → a → Image
imgFill c s = imgCrop s (imgMonochrome c)

6.4.3 Pens and Stroking

Another important operation in vector graphics is drawing the outline of a path,

called stroking a path.

Haven supports the standard collection of attributes for describing how the

outline of a path should be rendered. These attributes are collected in the Pen

data type:

-- join styles:
data Join = JoinMiter | JoinBevel | JoinRound

-- end caps:
data Cap = CapButt | CapRound

-- A pen specifies how the outline of a path is rendered:
data Pen = Pen{penWidth :: Float ,

penCap :: Cap,
penJoin :: Join,
penMiterLimit :: Float
}

86

These attributes are the standard attributes used in the PostScript and PDF ren-

dering model. The pen width is the width of the pen, measured perpendicular to

the path being stroked. The end caps describes the decoration applied to unclosed

subpaths. The join style describes the decoration applied at the intersection of two

segments in a subpath. The miter limit specifies how much to trim the decoration

in a JoinMiter join style.

Haven’s provides one primitive operation to stroke a path:

stroke :: (Shape a)⇒ Pen → a → Path

The behavior of stroke is illustrated in figure 6.2. Using a pen (figure 6.2(a))

to stroke a path (figure 6.2(b)) yields a new path whose interior is the result of

sweeping the pen along the path according to the pen attributes (figure 6.2(c)).

This resulting path may be used with any other operation on paths or shapes.

Figure 6.2(d) illustrates the result of applying imgFill to the path from figure 6.2(c).

6.4.4 Fonts and Text

Haven provides access to fonts, which specify how to map strings to a visual rep-

resentation. Fonts are identified by the font family name (a String), a style (inter-

preted as a set of style attributes), and a point size:

data StyleAttr = Bold | Italic
type Style = [StyleAttr] -- interpreted as a set
plain :: Style
plain = []

data Font = Font

font :: String → Style → Int → Font

For example, here is the definition of the default font:

fontDefault :: Font
fontDefault = font "SansSerif" plain 16

87

(a) Pen (b) Path

(c) Stroked Path

(d) Filled, Stroked Path

Figure 6.2: Stroking a Path with a Pen

88

The exact behavior of the font function is not specified, although it is expected to

be a total function, returning some Font value for any arguments.

The textShape primitive is used for rendering text:

textShape :: Font → String → Path

The textShape function returns a Path representing the outline of the given String

rendered in the given Font . This path may be used with imgCrop, imgStroke , or

any other function that operates on paths.

6.5 Layout

The Haven primitives presented thus far are adequate for producing a wide va-

riety of vector graphics images. However, these primitives are not particularly

convenient for composing images or geometric shapes to form larger images.

One very common pattern for composing images, particularly in graphical

user interfaces, is a rectilinear layout: The bounding rectangles of images are used

to arrange images horizontally or vertically.

Haven provides a set of utility combinators for composing paths or images

into rectilinear layouts. Types that can be laid out (including Path and Image) are

instances of the HasBounds and Placeable type classes.

The HasBounds type class is used for types for which a bounding rectangle can

be determined:

class HasBounds a where
bounds :: a → Rectangle

Suitable instances of HasBounds are defined for Path and Rectangle. Although we

technically can not give an instance for Image (since some images, such as those

returned by imgMonochrome, may be infinite in extent), we can easily imagine a

BoundedImage type which is identical to Image except that it requires the image

89

to have a bounding frame. The current implementation of Haven doesn’t provide

such a BoundedImage type. Instead, an instance of HasBounds is provided for

the Image type which will raise a runtime error if bounds is applied to an infinite

image.

The only Haven primitive for combining two images is imgOver , defined in

section 6.4.1. As defined, this function is both associative and has a left and

right identity (imgEmpty), and hence forms a monoid. This fact is captured in

the HMonoid type class:

class HMonoid a where
emptyPlaceable :: a -- monoid unit
(<++>) :: a → a → a -- monoid compose

overs :: (HMonoid a)⇒ [a]→ a
overs = foldr (<++>) emptyPlaceable

instance HMonoid Image where
emptyPlaceable = imgEmpty
(<++>) = imgOver

A suitable instance of HMonoid is also given for Path. The <++> operator for a

Path is simply the union of all sub-paths in both arguments, and the unit is the

empty path.

The type class Placeable is defined for all types that support rectilinear layout:

class (HMonoid a,Transformable a)⇒ Placeable a where
-- translate a Placeable value so that the upper left corner
-- of its bounding rectangle is located at the given Point

place :: Point → a → a

-- adjust a Placeable so that it is positioned on the given abscissa
xPlace :: Double → a → a

-- adjust a Placeable so that it is positioned on the given ordinate:
yPlace :: Double → a → a

-- compose two Placeables vertically, normalizing the result:
vcomp :: a → a → a

-- compose two Placeables horizontally, normalizing the result:
hcomp :: a → a → a

90

A common instance of Placeable is provided for all types that are instances of

HasBounds, Transformable and HMonoid (such as Path and Image):

instance (HasBounds a,Transformable a,HMonoid a)⇒ Placeable a where
place = bPlace
xPlace = bXPlace
yPlace = bYPlace
hcomp = bHComp
vcomp = bVComp

This use of the Haskell type class system enables us to avoid repeating the imple-

mentation of the Placeable type class members for paths, images, and other types.

Instead, we just need to define the much simpler HasBounds , Transformable and

HMonoid instances for each type. For example, here is the common implementa-

tion of the place function that is used for all of these derived instances:

bPlace :: (HasBounds a,Transformable a,HMonoid a)⇒ Point → a → a
bPlace pt obj =

let offset = pt .− . rectPointA (bounds obj)
in (translate offset) %$ obj

6.6 From Images to Pictures: A Rendering Monad

While the Haven primitives and utility routines presented thus far offer a simple,

explicit interface to vector graphics, using these functions directly can be some-

what cumbersome. This is because the values of some function arguments (such

as font, color, etc.) will have the same value in many places in the specification of

a typical image.

One solution to this problem is to use an environment monad [76] to capture the

common argument values. In an environment monad, common argument values

are stored in a record type (the environment) which is hidden behind a monadic

interface. For each function that depends on one of the standard argument val-

ues, a “lifted” version of the function is provided that has a monadic type. In the

91

lifted form of the function, the explicit argument is omitted, and is instead taken

from the environment monad. Wrapping the Haven functions in an environment

monad sacrifices some of the precise typing of the primitives for syntactic conve-

nience.

The rendering attributes (environment) provided in the rendering monad are:

data RA = RA{raFont :: Font,
raColor :: Color ,
raPen :: Pen
}

The Rendering monad is then defined as a standard environment monad:

type RenderM a = EnvM RA a

A Picture is defined as an Image value constructed using the rendering monad:

type Picture = RenderM Image

Values can be extracted from the rendering monad by providing an explicit set of

rendering attributes:

renderWith :: RA→ RenderM a → a
renderWith ra pm = applyEnvM pm ra

More common, however, is to simply use the global constant default rendering

attributes:

render :: RenderM a → a
render = renderWith raDefault

The “lifted” versions of various Haven primitives may omit parameters that can

be obtained from the environment. For example:

picMonochrome :: Picture
picMonochrome =

do ra ← rmGetRA
return $ imgMonochrome (raColor ra)

Similarly, many of the derived utility routines that operate over images have cor-

responding definitions in the context of pictures:

picFill :: (Shape a)⇒ a → Picture
picFill s = picCrop s picMonochrome

92

picOutline :: (Shape a)⇒ a → Picture
picOutline s = rmStroke s >>= picFill

Functions are provided to explicitly specify values in the environment:

withFont :: Font → RenderM a → RenderM a
withFont f = rmUpdateRA (λra → ra{raFont = f })

This allows us to write, for example:

-- font specified implicitly:
test1 :: Picture
test1 = picText "Hello, Haven!"

-- explicit font:
test2 :: Picture
test2 =

let f = font "SansSerif" (bold .|. italic) 32
in withFont f test1

6.7 Examples

Finally, we present a few examples to illustrate the kinds of images that can be

produced with Haven.

6.7.1 Sierpinski Gasket

Hudak’s “The Haskell School of Expression” presents a rendering of the fractal

“Sierpinski Gasket” as a demonstration of recursion. That version used the im-

perative “Draw” monad to render the image directly on to the screen. Here we

use Haven’s geometry operations to compose a path that describes the geometry

of the gasket, which can then be used to produce the desired image:

First, we define a simple function to produce an equilateral right triangle:

rightTri :: Point → Double → Path
rightTri pt0 size =

let (x , y) = pointXY pt0
in polygon [pt0 , point (x + size) y , point x (y − size)]

93

Figure 6.3: The Sierpinski Gasket

Using this definition, the path of the Sierpinski triangle is easily defined:

sierpinskiTri :: Point → Double → Path
sierpinskiTri pt size =

if size � minSize
then rightTri pt size
else let size2 = size / 2

(x , y) = pointXY pt
t1 = sierpinskiTri pt size2
t2 = sierpinskiTri (point x (y − size2)) size2
t3 = sierpinskiTri (point (x + size2) y) size2
in t1 <++> t2 <++> t3

To produce a complete image, we produce a filled version of the resulting path in

some color:

sierpinski :: Picture
sierpinski =

let spath = sierpinskiTri (point 250 250) 500
in place origin $ withColor blue $ picFill spath

The resulting picture is shown in figure 6.3

94

6.7.2 A Logo for Haven

We can use the Sierpinski Gasket from the previous section as a component of a

more complicated picture that demonstrates many of Haven’s features, including

alpha-blending, gradients, high quality fonts and text effects.

Here is a small program to produce a logo for Haven:

-- produce a filled outline shape, using lpen:
outFillShape :: (Shape a)⇒ a → Picture
outFillShape s =

(withColor black $ withPen lpen $ picOutline s) <++>
(picFill s)

-- a partially transparent circle:
cpic = withAlpha 0.5 $ withColor yellow $

outFillShape (circle origin 150)

rectPic = withAlpha 0.75 $ withColor red $
outFillShape (rectangle origin 160 75)

bodyPic = withAlpha 0.75 $ sierBGPic2

tpslide = (xyPlace 160 20 ttext
<++> decor
<++> xyPlace 300 180 rectPic
<++> xyPlace 220 150 cpic
<++> xyPlace 160 100 btext
<++> xyPlace 225 125 bodyPic)

logo = tpslide <++> bg

The output of the picture logo is shown in figure 6.4.

6.8 Chapter Summary

This chapter has presented Haven, a functional library for producing scalable vec-

tor graphics images in Haskell. Haven provides a clear separation between images

and geometry, and defines a small, statically typed, compositional set of render-

ing primitives. This small kernel of primitives is augmented by utility libraries

for producing common rectilinear layouts and a monadic interface that provides

95

Figure 6.4: A Logo for Haven

syntactic convenience.

96

Chapter 7

Fruit: A Functional GUI Library

This chapter defines Fruit, a Functional Reactive User Interface Toolkit. Fruit is a

library for composing graphical user interfaces in Haskell. Fruit makes no appeal

to the IO monad or other imperative programming constructs, relying solely on

the dataflow framework of Yampa developed in chapters 2 and 4, and the func-

tional graphics model of chapter 6.

7.1 Defining GUIs

Fruit is a modest library of types and functions for specifying graphical user in-

terfaces using Yampa. To illustrate the essence of composing a Fruit specification,

consider the following type:

type SimpleGUI = SF GUIInput Picture

The GUIInput type represents an instantaneous snapshot of the keyboard and

mouse state (formally just a tuple or record). The Picture type denotes a single,

static visual image.

A SimpleGUI , then, is a signal function that maps a Signal of GUIInput values

to a Signal of Picture values. As an example of a SimpleGUI , consider a challenge

97

mouseSF moveBall
gin mouse bpic

Figure 7.1: ballGUI Specification

for GUI programming languages posed by Myers many years ago [51]: a red circle

that follows the mouse. For the moment we assume the Fruit library provides a

signal function, mouseSF , that can extract the mouse’s current position from the

GUIInput signal:

mouseSF :: SF GUIInput Point

We will rely on the Haven graphics library of chapter 6 for types and functions

for static 2-D images, such as points, shapes, affine transforms and images. Using

just Haven on its own (without Yampa), we can write:

-- a red ball positioned at the origin:
ball :: Picture
ball = withColor red circle

moveBall :: Point → Picture
moveBall p = translatePic ball p

Given a point p whose components are x and y, moveBall p is a picture of the red

ball spatially translated by amounts given by x and y on the respective axes.

Note that moveBall is a function over static values, not over signals. However,

we can use Yampa’s primitive lifting operator arr to lift the moveBall function to

obtain a signal function that maps a time-varying point to a time-varying picture

(of type SF Point Picture). To allow the mouse to control the ball’s position we

connect the output signal of mouseSF to the input signal of the lifted moveBall

using serial composition, as shown in figure 7.1.

Using the Arrows syntax of chapter 2, we would write ballGUI as:

ballGUI :: SimpleGUI
ballGUI = proc gin → do

98

gin �−mouseSF → mouse
moveBall mouse �−returnA

Because the expression moveBall mouse is computed point-wise, this specifies

that, at every point in time, the output signal of the entire proc is moveBall applied

to mouse, where mouse is the point-wise sample of the output signal of mouseSF .

There is an important connection between such point-wise expressions and one-

way constraints. We can interpret the last line as a constraint specifying that, at

every point in time, the output picture produced by ballGUI must be ball trans-

lated by the current mouse position.

7.1.1 What is a GUI?

The SimpleGUI type is sufficient for describing GUIs that map a GUIInput signal

to a Picture signal. This accounts for the visual interaction aspects of a GUI, but

real GUI-based applications connect the GUI to other parts of the application not

directly related to visual interaction. To model these connections we expand the

SimpleGUI definition to:

type GUI a b = SF (GUIInput , a) (Picture , b)

The input and output signals of SimpleGUI have been widened by pairing each

with a type specified by a type parameter. These extra auxiliary semantic signals

enable the GUI to be connected to the non-GUI part of the application.

7.1.2 Library GUIs

The Fruit library defines a number a number of standard user interface compo-

nents (or “widgets”) found in typical GUI toolkits as GUI values. Here we briefly

present the programming interface to these components. Note, however, that

there is nothing special or primitive about these components; they are just or-

99

dinary GUI values, defined using the Yampa primitives and graphics library.

Labels The simplest standard GUI components are labels, defined as:1

flabel :: LabelConf → GUI LabelConf ()

ltext :: String → LabelConf

A label is a GUI whose picture displays a text string taken from its auxiliary input

signal, and produces no semantic output signal.

The behavior and appearance of a component at any point in time is deter-

mined by its configuration options. LabelConf is the type of configuration options

specific to the flabel component. For labels, LabelConf has just one constructor,

ltext , which specifies the string to display in the label. Note, too, that flabel is

defined as a function that takes a LabelConf argument and returns a GUI . The

LabelConf argument allows the user to specify an initial default configuration for

the properties of the GUI, analogous to the role of constructor arguments in object-

oriented toolkits. If a value for a particular property is specified by time-varying

input signal to the GUI, the value specified in the input signal will override the

initial configuration.

We use a trick from Fudgets [10] to specify configuration options. LabelConf ,

ButtonConf , etc. are simple State → State functions. These functions are very

similar to the update functions generated by using Haskell’s labeled field syn-

tax, in that they will update one component of the state, but leave all others un-

changed. This gives us a simple mechanism for composing property definitions

(using the function composition operator ’◦’) and for assigning default values for

component properties. We will see an example of this shortly.

1Haskell’s unit type (written ()) is the type with just one value, also called unit, and also written
as (). Unit serves a similar role to the void type in ANSI C.

100

Buttons A Fruit button (fbutton) is a GUI that implements a standard button

control. The declaration of fbutton is:

fbutton :: ButtonConf → GUI ButtonConf (Event ())

btext :: String → ButtonConf
enabled :: Bool → ButtonConf

There are two constructors for the ButtonConf type: one to specify the string to

display in the button, and another to control whether the button is enabled. A

button that is disabled will have a grayed-out appearance, and does not react to

mouse or keyboard input. A button is an event source that has an occurrence

when the primary mouse button is pressed when the mouse is positioned over

the button. Each event occurrence on the output signal carries no information

other than the fact of its occurrence, hence the type Event ().

7.2 The GUIInput Type

The GUIInput type represents the part of the input to a GUI specifically related to

its visual interactive characteristics. GUIInput is essentially just a pair of records:

data Mouse = {mpos :: Point ,
lbDown :: Bool ,
rbDown :: Bool }

data Kbd = { keyDown :: [Char]}
type GUIInput = (Maybe Kbd ,Maybe Mouse)

The Kbd and Mouse types are wrapped in Maybe types to account for the focus

model. In modern window systems, there is always a foreground application that

receives the keyboard and mouse input from the window system to the exclusion

of all other applications running in the background. The window system typically

provides a lightweight gesture (such as mouse-over or click-to-type) that allows

the user to shift the focus to another application. This concept of focus model is

equally applicable within a window, as we can view moving the mouse between

101

Figure 7.2: Using besideGUI

two different visible components of a window as shifting the mouse focus from

one component to the other. Keyboard focus traversal within a window (using

the TAB key, for example) can be modeled analogously. Each of the Maybe values

in the GUIInput signal to a GUI are Nothing when the GUI does not have focus,

and Just x (for some x) when the component has the focus.

7.3 Basic Layout Combinators

To be able to build more interesting interfaces, we need a mechanism to compose

multiple GUIs into a larger GUI. We provide two basic layout combinators for this

purpose:

aboveGUI :: GUI b c → GUI d e → GUI (b, d) (c, e)
besideGUI :: GUI b c → GUI d e → GUI (b, d) (c, e)

The layout combinators produce a combined GUI that behaves as the two child

GUIs arranged adjacent to one another. Here is a small example that illustrates

the use of besideGUI :

hello :: GUI () (Maybe (), ())
hello = proc (inpS ,)→ do

(fbutton ‘besideGUI ‘ flabel)−≺
(inpS , (btext "press me",

ltext " PLEASE! "))

The result of running this GUI in a top-level window with runGUI is shown in

figure 7.2. A translation transformation has been applied to the second argument

102

GUI to position it beside the first argument. The implementation of spatial trans-

formation for GUIs will be described in detail in section 7.3.1.

In addition to transforming the second argument, the layout combinators must

demultiplex the input signal into two disjoint signals to be passed to each child.

This is achieved by clipping the GUIInput signal based on the mouse position and

the bounds of the picture output signals of the composed GUIs: The GUI under

the mouse receives the (appropriately transformed) keyboard and mouse signals,

while its sibling receives Nothing values for the keyboard and mouse to indicate

that it does not have focus.2

7.3.1 Transforming GUIs

One difference between Fruit and every other production user interface toolkit

we are aware of (for either imperative or functional languages) is that Fruit pro-

vides a uniform model and programming interface for both “low-level” interac-

tive graphics and “high level” user interface components such as buttons. More-

over, since GUIs are first class values that denote pure functions, we can use higher-

order operators to manipulate GUIs in useful ways.

One of the most basic higher-order functions is the function composition oper-

ator (◦); we use >>> instead, but the denotation is equivalent. (Recall that (>>>) is

reverse composition, so f >>> g = g ◦ f for the function space arrow.) Armed with

just this operator, we can define spatial transformation of a GUI . We will define a

generalized transformGUI operator that applies an (affine) spatial transform to a

GUI to produce a new GUI:

2Our current implementation of focus is based solely on mouse position. This is slightly sim-
plistic, as modern user interface guidelines stipulate a keyboard focus cycle that is independent of
the mouse focus. Extending our implementation to support such a split focus model is straight-
forward.

103

transformGUI :: Transform → GUI b c → GUI b c

Assuming that we have a basic understanding of spatial transformation for pic-

tures, how shall we define spatial transformation of a GUI ?

First, let’s quickly review spatial transform for pictures. When we apply a

spatial transform to a picture, it changes the size, position, or orientation of the

picture. Consider translation of a picture by a displacement vector (∆x, ∆y). In

general, this translation maps every (x, y) position in the original image to an

(x′, y′) position in the new image by:

(x′, y′) = (x + ∆x, y + ∆y)

or, more generally, if tf represents the transformation, and %$ is the apply-transform

operator:

(x′, y′) = tf %$ (x, y)

Note that %$ is defined as part of the Transformable type class, so instance declara-

tions may be given for any type that supports spatial transformation.

Since a GUI ’s visual output is a signal of Picture , and our graphics library

supports applying affine transforms to Picture values, we can transform a GUI’s

output by point-wise application of the transform to the picture output signal. But

what about input?

If g is a GUI , point-wise transformation of g ’s picture signal will map every

(x, y) position in g ’s coordinate system to (x′, y′). In order to give an accurate

input signal to g , transformGUI must map every (x′, y′) mouse position back to

its corresponding (x, y) position in g . This suggests a general principle for trans-

forming functions: To transform a function (in time or in space), apply the transform

point-wise to the output, and apply the inverse transform point-wise to the input. This

104

idea corresponds exactly to Pan’s spatial “hyper-filters” [22], i.e., spatial transfor-

mations of Image→ Image functions. Note that this sample principle of applying

a transform to a function was used to account for applying a time transform to a

signal function in the denotational semantics of switch in chapter 4.

The implementation of transformGUI is then simply:

transformGUI tf g = proc (inp, b)→
(pic, c)← g−≺ (inverse tf %$ inp, b)
returnA−≺ (tf %$ pic, c)

This model for transforming GUIs is used in the implementation of the layout

combinators to reposition their second argument GUI . The transform to apply to

the second argument is determined dynamically by applying a bounds operation

point-wise to the Picture signal produced by the first argument GUI.

Spatial Scalability

While our basic layout combinators only use basic horizontal and vertical trans-

lations, the transformGUI operator can apply any affine transform to a GUI. For

example, here is a version of a Paddleball game that runs in a window 1/2 the size

of the original:

-- uniform scaling transform (from Graphics library):
uscale :: Double → Transform

minipb :: Double → GUI () (Maybe ())
minipb vel =

transformGUI (uscale 0.5) (pball vel)

When run, minipb displays a fully functional version of Paddleball shrunk down

to postage stamp size. This type of zooming capability is obviously extremely use-

ful for implementing vector or bitmap graphics editors, document previewers, etc.

where zooming is a natural operation. But recent work in the Human/Computer

Interaction (HCI) community has proposed continuous zooming can be a useful

105

abstraction in its own right for many applications [63] [6]. Providing continuous

zoom allows graphical interfaces to be designed so that users can “zoom out” for

an overview of the data and “zoom in” for more detail. Pad [63] and Jazz [6] are

two recent research projects that augment the widget set of a traditional impera-

tive GUI toolkit with the abstraction of a continuously zoomable drawing surface.

The starting points for Pad and Jazz were the toolkits Tk and Swing, respec-

tively. Because the Tk and Swing programming interfaces hide their connection

with the graphics subsystem, Pad and Jazz are essentially new GUI toolkits, and

require that existing applications be rewritten from scratch to take advantage of

the zooming capabilities. In contrast, Fruit makes the connection to the interactive

graphics subsystem seamless and explicit in the type of GUI . As minipb demon-

strates, this explicit connection to interactive graphics allows us to incorporate

novel ideas (such as continuous zooming) without a major restructuring of the

library or completely rewriting applications.

7.4 Specifying Layout Using Arrows

As the example from section 7.3 illustrates, a composed GUI has auxiliary seman-

tic input and output signals whose types are the product of the corresponding

types from the child GUIs. This has substantial syntactic consequences. Programs

can become complicated rather quickly, because the type of a composed GUI will

grow in proportion to the nesting depth of the layout.

To redress the syntactic overhead of specifying layout, Fruit exploits the abil-

ity of the Arrows framework to perform implicit plumbing based on the linear

sequencing of arrow composition. Fruit defines two new type constructors, GA

and Box , both of which are, like SF , declared as instance of Arrow .

106

The GA type is simply a newtype wrapper around the GUI type synonym

given earlier:

newtype GA b c = GA (SF (GUIInput , b) (Picture, c))

The only interesting thing about the Arrow instance declaration for GA is the com-

pose operation (>>>). The compose operation defined for GA assumes that GUIs

are laid out, and clips the GUIInput signal of each GUI by the bounds of its output

picture signal:

gaComp :: GA b c → GA c d → GA b d
gaComp (GA g1) (GA g2) = GA $ proc (gin, b)→ do

rec let g1bounds = rbounds g1pic
let g1gin = clipRect g1bounds gin
(g1pic, c)← g1−≺ (g1gin, b)
let g2gin = invClip g1bounds gin
(g2pic, d)← g2−≺ (g2gin, c)

returnA−≺ (g1pic <++> g2pic, d)

The Box type is used to specify a sequence of GUIs that should be laid out in a lin-

ear arrangement. Box is defined as an environment arrow, so that the specification

of whether or not to lay out a box vertically or horizontally can take place outside

of the box:

newtype Box b c = Box (LayoutF → GA b c)

Here LayoutF is a layout function. The layout function takes a Rectangle that en-

closes all preceding GUIs in the sequence, and computes a Transform to apply to

layout the next GUI:

type LayoutF = Rectangle → Transform

We can now define a version of gaComp that takes a LayoutF and applies this to

the bounding rectangle of the first GA to compute a transform to apply to the

second GA:

gaGComp :: LayoutF → GA b c → GA c d → GA b d
gaGComp lf (GA g1) (GA g2) = GA $ proc (gin, b)→ do

rec let g1bounds = rbounds g1pic
let g1gin = clipRect g1bounds gin

107

(g1pic, c)← g1−≺ (g1gin, b)
let g2gin = invClip g1bounds gin
let tf = lf g1bounds
(g2pic, d)← dynTransformGUI g2−≺ (g2gin, (tf , c))

returnA−≺ (g1pic <++> g2pic, d)

The arrow compose operator for Box simply inherits the layout function from the

environment and uses this to layout its children:

compBox :: Box b c → Box c d → Box b d
compBox (Box b1f) (Box b2f) = Box $ λlf → gaGComp lf (b1f lf) (b2f lf)

The interaction between Box and GA ensures that a box is always laid out before

it can be used as a GA. The functions for applying a layout to a Box to obtain a

GA are hbox and vbox , defined as follows:

vlayout :: LayoutF
vlayout r = yTranslate (rectHeight r)

hlayout :: LayoutF
hlayout r = xTranslate (rectWidth r)

hbox :: Box b c → GA b c
hbox (Box bf) = bf hlayout

vbox :: Box b c → GA b c
vbox (Box bf) = bf vlayout

Finally, a number of useful liftings are provided for lifting ordinary signal func-

tions and GUIs into Box and GA:

box :: GA b c → Box b c
box ga = Box (const ga)

boxSF :: SF b c → Box b c
boxSF = box ◦ gaSF

boxGUI :: GUI b c → Box b c
boxGUI = box ◦GA

Using the Box and GA types in conjunction with the Arrows syntactic sugar makes

specifying GUIs easy and concise. For example, here is a version of the “hello”

GUI from figure 7.2 using the box layout arrow:

boxHello :: GA () ()
boxHello = hbox $ proc → do

button −≺ btext "press me"

108

label −≺ ltext "please!"

Here button and label are simple liftings of the corresponding GUI component

into Box . The button and label will be arranged linearly in the order in which they

are specified, and they will be laid out horizontally by virtue of passing the box

to hbox . All of the plumbing of the GUIInput and Picture signals is now handled

automatically by the Box arrow instance.

7.5 Chapter Summary

This chapter has presented Fruit, a Functional Reactive User Interface Toolkit.

Fruit defines GUIs compositionally using only the Yampa framework and for-

mally tractable types for the keyboard, mouse and pictures. GUI components

provide input and output signals to model input devices and visual display, and

auxiliary semantic input and output signals for connecting to the rest of the pro-

gram. A set of layout combinators provide multiplexing and demultiplexing of

window-system related input and output signals, and suitable arrow instances

use the linear sequencing of arrows to automate many of the details of layout.

109

Chapter 8

Dynamic Collections in Yampa

The previous chapter presented the basic Fruit GUI model. In the basic model,

each GUI component is represented as a signal function, and Fruit’s layout com-

binators and Yampa’s switching constructs are used to realize more complicated

user interfaces.

While the basic Fruit model is adequate, it turns out to be non-modular for

expressing a certain important class of user interfaces, specifically those in which

user interface components are dynamically added to or removed from the inter-

face in response to user input. This chapter describes this problem, and presents

our solution, which involves extending Yampa with first-class signal function con-

tinuations and a set of parallel switching combinators for switching over signal func-

tion collections.

8.1 The Need for Dynamic Collections

In the Fruit model, each GUI component is represented as a signal function of type

GUI a b. In addition to providing the programmer with facilities to define indi-

110

vidual GUIs, Fruit provides a set of layout combinators that can combine two or

more GUIs to form a larger aggregate GUI. Visually, two GUIs composed with lay-

out combinators are tiled either horizontally or vertically. Temporally, however,

two GUIs composed with layout combinators are executing in parallel.

Since GUIs are just signal functions, the standard Yampa switching combina-

tors can be used to switch from one GUI to another in response to input events.

Switching provides a kind of sequential composition over time: A GUI runs until

some event occurs, and then switches to some other GUI.

8.2 Parallel Composition and Local State

An important property of signal functions is that they can accumulate local state

internally. This is achieved either by direct use of feedback or through the many

pre-defined accumulating signal function utilities provided in the standard Yampa

utilities library (accum, hold , etc.).

When two state accumulating signal functions are composed in parallel, each

signal function can accumulate its own internal state. For example, figure 8.1

shows the user interface for searching an email folder in the Mozilla Thunderbird

email client. This interface is composed of a number of user interface compo-

nents, such as buttons, text fields, drop down menus, etc. In Fruit, each such user

interface component would be implemented as a GUI . Many of the user interface

components in this example accumulate local state. In each row of search criteria,

the drop down menus in the first two columns maintain the currently selected

menu item, while the text fields in the final column maintain the string entered

by the user. The parallel composition of signal functions allows each of these GUI

components to accumulate its localized state independently of the others. For ex-

111

Figure 8.1: Mozilla Thunderbird Search Interface

ample, typing in the text field in one row affects only that text field; the other text

fields and drop down menus in the interface retain whatever local state they have

accumulated.

However, there is also a dynamic aspect to this particular user interface. Be-

neath the rows of search criteria in figure 8.1 are two buttons labeled “More” and

“Fewer”. Pressing the “More” button adds another row of interactive GUI com-

ponents to the list of search criteria. Pressing the “Fewer” button removes the last

such row.

It is certainly possible to implement the search pane user interface in Fruit and

Yampa, using only the primitives defined in chapters 4 and 7. Unfortunately, as

we shall see, the “obvious” solution has a couple of substantial flaws.

112

8.3 A First Attempt

Let us consider how we might implement a simplified version of the dynamic

collection of search attribute GUIs from the interface of figure 8.1 in Fruit. Let’s

assume that this interface consists of a number of rows, each of which is a GUI

whose output signal is a representation of some predicate about one attribute of

an email message:

oneRow :: GUI () MsgAttr
oneRow = ... -- an ‘hcomp‘ of two menus and a text field

The MsgAttr type is the representation of the predicate specified by the user; it’s

details won’t concern us here.

For simplicity, let us define a dynamic grid which contains a time-varying num-

ber of rows. For now we’ll ignore the “Fewer” button (which removes a row from

the grid), and just implement the “More” button which adds rows to the grid. The

dynamic grid will have type:

dynGrid :: GUI (Event ()) [MsgAttr]

The input signal is an event whose occurrence indicates that another row should

be added to the grid. The output signal is the collection of message attribute

predicates, one from each row.

If we have a value for the current collection of rows, it is easy to see how to

produce a GUI that has another row:

-- Add a row to a given search grid of arbitrary size:
addRow :: GUI () [MsgAttr]→ GUI () [MsgAttr]
addRow curGrid = proc (gin,)→ do

(pic, (sas, sa))←
curGrid ‘aboveGUI ‘ oneRow−≺ (gin, unit)

returnA−≺ (pic, sa : sas)

The above code simply uses ‘aboveGUI‘ to place the current grid above another

row. Note that the auxiliary output signal of the composed grid is formed by

113

cons’ing the output of the new row on to the list of outputs of the current grid.

The natural way to realize the grid itself is through use of switch. The type of

switch:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

In response to an event occurrence from the “More” button, the grid should switch

from the current grid to a grid with one more row (produced by addRow):

-- Given the current grid, produce a GUI that will observe an
-- event source input signal and add a new row when the event occurs:

mkGrid :: GUI () [MsgAttr]→ GUI (Event ()) [MsgAttr]
mkGrid curGrid = switch aux

(λ → mkGrid (addRow curGrid))
where aux :: SF (GUIInput ,Event ())

((Picture , [MsgAttr]),Event ())
aux = proc (gin,moreE)→ do

(pic,mas)← curGrid−≺ (gin, ())
returnA−≺ ((pic,mas),moreE)

The mkGrid functions takes a GUI that is the current collection of grid rows. This

is wrapped in an auxiliary GUI that simply passes along the external event signal

indicating a request for more rows, grouping the output signals in a way that is

compatible with the type of switch. The second argument to switch specifies the re-

action to the switching event: a recursive call to mkGrid , passing (addRow curGrid)

as the new grid.

While this certainly gives a partial account of how to implement dynamic user

interfaces in Fruit, this implementation has two significant flaws:

• Localized state accumulated in signal functions is not preserved across a

switch. So although the above definitions implement a dynamic collection

of GUIs, the collection will not exhibit the desired behavior: Every time the

user presses the “More” button a new row will be added to the search grid,

but the internal state of all previous rows will be reset.

114

• While rows can be dynamically added to the collection, there is no straight-

forward way to generalize this to the removal of rows, as we would need

to do in order to implement the functionality of the “Fewer” button of fig-

ure 8.1. The problem is that, after each switching event, the entire collection

is represented as a single value of type GUI () [MsgAttr]. This type does not

provide any access to the internal structure of the collection of GUI s which

comprise this larger aggregate GUI.

We could potentially work around the first deficiency outlined above by making

all internal state accumulated in each GUI available in the GUI’s auxiliary output

signal. We could then snapshot this auxiliary state at the time of the switching

event occurrence, and use this to reconstruct the state after the switch. However,

this would be both a tedious burden on the Yampa programmer and extremely

non-modular, since it would require all internal state of all embedded signal func-

tions to be exposed as an output signal, and every signal function constructor to

accept an “initial state” argument.

8.4 Continuation-Based Switching

Fortunately, there is a more modular solution to the problem of preserving local

state across a switch: continuation-based switching. Recall that the implementa-

tion in chapter 5 defines a signal function as a transition function:

data SF a b =
SF{sfTF :: DTime → a → (SF a b, b)}

The first component of the result of the transition function is a signal function con-

tinuation that determines how the signal function will behave at the next sample

time (and hence, inductively, at all future sample times also). Hence, this signal

115

function continuation must contain internally all of the localized state accumu-

lated by the signal function.

The key to enabling this local state to be preserved across a switch is to provide

the user with access to such signal function continuations as first-class values. The

most basic form of this is kSwitch, a variation on switch that provides the user with

the signal function continuation at the time of the switch:

-- ”Call-with-current-continuation” switch.
kSwitch :: SF a b → SF (a, b) (Event c)
→ (SF a b → c → SF a b)
→ SF a b

The first argument to kSwitch is a signal function to execute initially (called the em-

bedded signal function, since it is embedded in the switch). The second argument is

an observer signal function. The observer is given access to both the external input

signal and the output signal of the embedded signal function, and produces an

event signal whose occurrence causes the switch. The final argument to kSwitch is

a function that determines the signal function to switch into. As with the ordinary

switch, this function is passed the value carried in the switching event. However

kSwitch also passes the current signal function continuation. This is a representation

of the embedded signal function at the time of the switch.

The type of such signal function continuations is SF a b, the same type as any

other signal function. This gives the programmer great flexibility in handling sig-

nal function continuations: the continuation can be switched back in immediately,

composed with other signal functions, or saved in a data structure to be switched

back in at some later time.

Using kSwitch instead of switch allows us to easily implement a version of the

search grid that alleviates one of the problems of the previous version:

mkGrid ′ :: GUI (Event ()) [MsgAttr]→ GUI (Event ()) [MsgAttr]
mkGrid ′ curGrid = kSwitch curGrid (arr (snd ◦ fst))

116

(λgrid → mkGrid ′ (addRow ′ grid))

-- like addRow, but polymorphic on input type:
addRow ′ :: GUI a [MsgAttr]→ GUI a [MsgAttr]
addRow ′ curGrid = proc (gin, x)→ do

(pic, (sas, sa))←
curGrid ‘aboveGUI ‘ oneRow−≺ (gin, (x , unit))

returnA−≺ (pic, sa : sas)

In this implementation, the current grid is captured in a signal function continua-

tion when the user presses the “More” button. When the switching event occurs,

the “current grid” is passed to the switching function (as the argument grid in the

λ expression), and this current grid is extended with a new row.

8.5 Parallel Switching and Signal Collections

There is still one problem with our implementation of the dynamic grid. Although

the use of kSwitch preserves the state of the grid across a switch, this still does not

account for the “Fewer” button. The problem with implementing this feature is

that, after each switch, the signal function being switched in to is formed by com-

posing a new row with the current grid using aboveGUI . However, the internal

structure of this composition is not exposed to the switching function. In order to

allow switching functions to be able to manipulate the internal structure of a set

of running signal functions, Yampa provides support for signal function collections.

Signal function collections are used to condense groups of signal functions into

a single signal function. The collection type is arbitrary; it needs only to be in the

Functor class. The simplest operation groups signal functions sharing a common

input:

parB :: Functor col ⇒ col (SF a b)→ SF a (col b)

The B suffix of parB signifies that, in the resulting signal function, the input signal

is broadcast to all signal functions in the collection. Sometimes, however, it is de-

117

sirable to specify a routing function that determines the input signal to be delivered

to each element of the collection; the par primitive is provided for this purpose:

par :: Functor col ⇒
(forall sf ◦ (a → col sf → col (b, sf)))
→ col (SF b c)
→ SF a (col c)

This primitive will apply its first argument (the routing function) point-wise to the

external input signal and the collection of signal functions to obtain a collection

of (input sample, signal function) pairs. Each signal function in the collection

can thus be given its own input sample. One way of thinking about the routing

function is as a way of controlling perception: the routing function determines the

view of the world seen by each element of the collection. This can be used to,

for example, allow a set of objects to perceive only their closest neighbor, or only

those that are located in some specified field of view.

While par and parB give us basic facilities for maintaining collections of sig-

nal functions, the collections are fundamentally static: we cannot add or remove

signal functions from the collection. For dynamic collections, we provide pSwitch,

which allows the collection to be updated in response to events:

pSwitch :: Functor col ⇒
(forall sf ◦ (a → col sf → col (b, sf)))
→ col (SF b c)
→ SF (a, col c) (Event d)
→ (col (SF b c)→ d → SF a (col c))
→ SF a (col c)

The first two arguments are the routing function and initial collection, just as in

par . The third argument is a signal function that observes the external input signal

and the output signals of the collection, producing an event that triggers collec-

tion update. When the event occurs, the collection is reshaped by a function that

produces a new collection given the value of the event.

118

The argument to the collection update function is the collection of signal func-

tion continuations captured at the time of the switch. As with kSwitch, these

continuations are plain, ordinary signal functions, and thus can be resumed, dis-

carded, stored, or combined with other signal functions.

pSwitch is a “switch once” combinator; another version, rpSwitch uses a recur-

ring switch in the manner of rSwitch.

Although these switching combinators may appear complex and numerous,

there is an underlying structure and relationship between all of the different switch-

ers. For example, rSwitch is defined in terms of switch using a simple recursive

definition:

rSwitch :: SF a b → SF (a,Event (SF a b)) b
rSwitch sf = switch (first sf) rSwitch ′

where
rSwitch ′ sf = switch (sf ∗∗∗ notYet) rSwitch ′

In the above definition, (∗∗∗) is a derived combinator for parallel composition of

two arrows, and notYet is a primitive signal function that suppresses an event

occurrence at time t = 0, but otherwise behaves as the identity signal function:

(∗∗∗) :: SF a b → SF c d → SF (a, c) (b, d)
notYet :: SF (Event a) (Event a)

The pSwitch primitive is the most general of the switchers: all other switchers can

be defined in terms of pSwitch.

8.6 Dynamic Interfaces Example

Finally, we present an implementation of the search grid portion of the interface

of figure 8.1 using pSwitchB . This version addresses both of the deficiencies of the

first implementation in section 8.3: rows may be both added and removed from

the search grid with the “More” and “Fewer” buttons, and such dynamic updates

119

will have no effect on the internal state of other rows in the grid.

mkGrid ′′ :: [GUI (Event (),Event ()) MsgAttr]
→ SF (GUIInput , (Event (),Event ())) [(Picture ,MsgAttr)]

mkGrid ′′ curGrid =
pSwitchB curGrid observe nextGrid

where
observe :: SF ((GUIInput , (Event (),Event ())),

[(Picture ,MsgAttr)])
(Event Bool)

observe = proc ((gin, (moreE , fewerE)), pmas)→
returnA−≺ (moreE ‘tag ‘ True) ‘merge‘

(fewerE ‘tag ‘ False)
nextGrid :: [GUI (Event (),Event ()) MsgAttr]
→ Bool
→ SF (GUIInput , (Event (),Event ()))

[(Picture ,MsgAttr)]
nextGrid g True = mkGrid ′′ (oneRow ′′ : g)
nextGrid [] False = mkGrid ′′ []
nextGrid (r : rs) False = mkGrid ′′ rs

oneRow ′′ :: GUI (Event (),Event ()) MsgAttr
oneRow ′′ = proc (gin,)→ do

oneRow−≺ (gin, ())

In the above implementation, observe merges the moreE and fewerE event signals

into a single boolean event signal. An event occurrence carrying True indicates

that a row should be added to the grid, whereas False indicates a row should be

removed. The nextGrid function takes the current collection of signal functions

that form the grid (a list of rows) and the boolean event, and forms a new grid by

adding or removing a row. As presented here, the result is not actually a proper

GUI type; instead it is a signal function with a single GUIInput signal and a collec-

tion of (Picture ,MsgAttr) output signals. A complete implementation would need

to de-multiplex the GUIInput signal to each GUI in the collection and merge the

list of output pictures into a single picture by performing a point-wise fold using

vcomp (the vertical composition operator). The details are straightforward and are

omitted here for brevity.

120

8.7 Chapter Summary

This chapter described dynamic user interfaces and the problem they present for

a dataflow programming model such as Yampa. We presented our extensions to

Yampa to support such dynamic collections. Our solution is based on making

the signal function continuations used in our operational semantics of chapter 4

and implementation of chapter 5 available to the Yampa programmer as first-class

values, and to provide a switching primitive that can operate over collections of

signal function continuations.

121

Part II

Applications

122

Chapter 9

Proving Properties of Yampa

Applications

As noted in chapter 1, most graphical user interface toolkits are defined in terms

of the imperative programming features of the language in which the toolkit was

implemented. Fruit differs from these toolkits in that it does not appeal to im-

perative programming constructs or implementation artifacts for its definition.

Instead, Fruit is defined entirely using Yampa, which provides a simple, precise

formal model of reactive programming based on synchronous dataflow.

One benefit of functional programming in a pure language is that it enables

simple formal proofs based on equational reasoning. Since Yampa is defined

within the pure functional core of Haskell, we would expect that this benefit could

be extended to Yampa applications, including Fruit. In this chapter, we explore

basic equational reasoning proofs for Yampa.

123

9.1 Preliminaries and Notation

In this section, we define some types and logical formulas that will be useful when

formulating propositions we wish to prove about Yampa programs.

In writing logical formulas, we will freely mix Haskell notation with standard

mathematical notation. Haskell notation is usually preferred, but we will resort to

mathematical notation where necessary. For example, we may write N to denote

the set of natural numbers since the Haskell type system has no way to express

this type. Haskell types appearing in logical quantifiers denote the set of all values

of that type. For example:

∀xs ∈ [T]....

is a logical formula in which xs ranges over all lists of type T .

We will use the convention that superscripts in lists types specify list length.

So, for example:

∀xs ∈ [T]n....

is a formula in which xs ranges over all lists of T of length n.

9.1.1 Observing Signal Functions

Recall from the continuation semantics of chapter 4 that a signal function SF can

be represented with type:

data SF a b =
SF{sfTF :: DTime → a → (SF a b, b)}

The sfTF is a transition function that gives the reaction of a Yampa program to a

single input stimulus (consisting of the delta time and a single sample of the input

signal). The result is a signal function continuation that specifies how the rest of the

input signal is processed, and a value for the signal function’s output signal at the

124

time of sampling.

Given a (potentially infinite) sequence of (DTime, a) pairs, a run of a Yampa

program is the result of applying the signal function to the first input stimulus,

applying the resulting continuation to the second input stimulus, etc. Formally,

we define a run as follows:

runSF :: SF a b → [(DTime, a)]→ [(SF a b, b)]
runSF sf dtas = tail (scanl aux (sf ,⊥) dtas)

where aux (sf ,) (dt , a) = (sfTF sf) dt a

runSF :: SF a b → [(DTime, a)]→ [b]
runSF sf dtas = map snd (runSF sf dtas)

where scanl is the standard Haskell list-processing function:

scanl f z [x1 , x2 , ...] ≡ [z , z ‘f ‘ x1 , (z ‘f ‘ x1) ‘f ‘ x2 , ...]

The variant runSF is provided when only the sequence of samples of the output

signal are of interest.

9.1.2 The “always” Quantifier

We often wish to show that some logical proposition always holds for the out-

put signal of some signal function, regardless of its input signal. For this pur-

pose, we use the � (“always”) quantifier of Lamport’s Temporal Logic of Actions

(TLA) [43]. In the context of Yampa, we define the always quantifier as:

� :: (b → Bool)→ SF a b → Bool

� p sf
def
= ∀n ∈ N, dtas ∈ [(DTime, a)]n . all p (runSF sf dtas)

Informally, this definition states that a predicate p always holds for some signal

function sf if, for all possible input sequences to which sf is applied, the predicate

p holds for all of the output samples.

125

9.2 An Invariance Theorem

In the continuation based operational semantics of chapter 4, signal functions are

sampled at discrete sample points or time steps. It is often useful to express proper-

ties of Yampa programs as invariants – logical propositions about a signal function

that, if true at the start of a given time step, will also hold for the continuation

signal function returned for use on the next time step.

A simple but useful theorem about signal function invariants is the following:

Theorem 9.2.1 (Invariance Theorem for Signal Functions). Let p be a logical propo-

sition about signal functions and sfi be a signal function parameterized by an integer i.

Then:

(∀i ∈ N, dt, a.∃j ∈ N, b.((sfTF sfi dt a) = (sfj, b) ∧ p b)) ⇒ � p sf0

Informally, the invariance theorem states that if some property p is true of the

output sample of signal functions of the form sfi and we can show that the con-

tinuation of sfi is of the form sfj , then the given property always holds for any

run beginning with sf0.

Proof of Theorem 9.2.1: By induction on the length of a run, n.

Expanding the definition of �, we must show that:

(∀i ∈ N, dt, a.∃j ∈ N, b.((sfTF sfi dt a) = (sfj, b) ∧ p b)) ⇒
∀n ∈ N, dtas ∈ [(DTime, a)]n . all p (runSF sf0 dtas) (1)

126

In each part of the inductive proof, we will take the propositions on the left-

hand side of ⇒ in (1) as assumptions and show that the right hand side always

holds.

Base Case: n = 1:

∀dtas ∈ [(DTime, a)]1 . all p (runSF sf0 dtas)

By definition of list of length 1:

≡ ∀dt , a. all p (runSF sf0 [(dt , a)])

By definition of runSF :

≡ ∀dt , a. all p (map snd (runSF sf0 [(dt , a)]))

By definition of runSF :

≡ ∀dt , a. all p (map snd (tail (scanl aux (sf0,⊥) [(dt , a)])))

By definition of scanl :

≡ ∀dt , a. all p (map snd (tail [(sf0,⊥), aux (sf0,⊥) (dt , a)]))

By definition of map, tail :

≡ ∀dt , a. all p [snd (aux (sf0,⊥) (dt , a))]

By definition of all :

≡ ∀dt , a. p (snd (aux (sf0,⊥) (dt , a)))

By definition of aux :

≡ ∀dt , a. p (snd ((sfTF sf0) dt a))

By assumption from l.h.s. of⇒ in (1):

≡ True

127

Inductive Hypothesis: Assume that, for all n ∈ Z
+:

(∀i ∈ N, dt, a.∃j ∈ N, b.((sfTF sfi dt a) = (sfj , b) ∧ p b)) ⇒
∀dtas ∈ [(DTime, a)]n . all p (runSF sf0 dtas) (IH)

Inductive Step: Given (IH), show that:

(∀i ∈ N, dt, a.∃j ∈ N, b.((sfTF sfi dt a) = (sfj , b) ∧ p b)) ⇒
∀dtas ∈ [(DTime, a)]n+1 . all p (runSF sf0 dtas)

We will make use of the following lemma (along with some other obvious

properties of lists and the map function):

Lemma 9.2.2 (Scan Lemma). From the definition of scanl in the standard Prelude:

scanl f z (xs ++ ys) =
(scanl f z xs) ++

tail (scanl f (last (scanl f z xs)) ys)

all p (runSF sf0 dtas)

By definition of runSF :

= all p (map snd (runSF sf0 dtas))

By definition of runSF :

= all p (map snd (tail (scanl aux (sf0,⊥) dtas)))

Since dtas is a list of length n + 1, it must be of the form:

dtas = [(dt0, a0), (dt1, a1), ...(dtn, an), (dtn+1, an+1)]

= dtasn ++ [(dtn+1, an+1)]

128

scanl aux (sf0,⊥) dtas

= (scanl aux (sf0,⊥)(dtasn ++ [(dtn+1, an+1)])

By scan lemma:

= sfbsn ++ (scanl aux (last sfbsn) [(dtn+1, an+1)])

where sfbsn = scanl aux (sf0,⊥) dtasn

But note that sfbsn is the right hand side of a run of length n, and hence an instance

of the inductive hypothesis. Let (sfn, bn) = tail sfbsn. Then:

scanl aux (last sfbsn) [(dtn+1, an+1)]

= scanl aux (sfn, bn) [(dtn+1, an+1)]

= [sfTF sfn dtn+1an+1]

By (IH),

∃ j, b.(sfTF sfndtn+1an+1) = (sfj, b) ∧ p b

Hence:

all p (map snd (tail (scanl aux (sf0,⊥) dtas)))

= all p (map snd (tail sfbsn) ++ [b])

By definition of all :

= (all p (map snd) (tail sfbsn)) ∧ (p b)

By (IH):

= True ∧ True

= True

129

9.3 Example: A Simple Bounded Counter

In this section, we present an implementation of a simple “bounded counter” in

Yampa. We wish to produce a signal function that takes an event signal as in-

put and produces an integer signal as output. The input event signal indicates a

request to increment the counter. In general, we want the integer on the output

signal to be incremented whenever an event occurs on the input signal. How-

ever, such increment requests should be ignored once the counter reaches some

specified maximum value.

9.3.1 Implementation

The implementation of the bounded counter in Yampa is as follows:

bc :: Int → Int → SF (Event ()) Int
bc ival max = loop ((arr gateReq) >>> dAccumHold ival >>> arr dup)

where gateReq :: (Event (), Int)→ Event (Int → Int)
gateReq (incReq , n) =

(incReq ‘gate‘ (n < max)) ‘tag ‘ (+1)
dup x = (x , x)

The bounded counter (bc) is realized as a function that takes an initial value (ival)

and a maximum value (max) and returns a signal function of the appropriate type.

The loop combinator is used to feed back the integer output signal. The gateReq

function, which is applied point-wise to all input events (increment requests), uses

the standard Yampa utility function gate to filter increment requests: An incre-

ment request is allowed to pass through the filter so long as the current value of

the counter (n) is less than the upper bound (max). In this case, the event is tag-ed

with the increment function. The lifted gateReq is composed with dAccumHold ,

which acts as a hold register.

The relevant definition of dAccumHold (from the Yampa utilities) is:

130

dAccumHold :: a → SF (Event (a → a)) a
dAccumHold a init = accum a init >>> dHold a init

dHold :: a → SF (Event a) a
dHold a0 = hold a0 >>> iPre a0

The above definitions depend on the following Yampa primitives:

accum :: a → SF (Event (a → a)) (Event a)

hold :: SF (Event a) a

iPre :: a → SF a a

Finally, returning back to the definition of the bounded counter (bc), the output of

dAccumHold is fed in to arr dup so that the integer output signal is used for both

the overall and fed-back output of the signal function.

9.3.2 A Rudimentary Proof

As a simple example of a Yampa proof, let us prove that if the initial value of the

counter is bounded, then the counter is always bounded:

We want to show that:

Theorem 9.3.1.

∀max ∈ N, i ∈ [0, max] . � (is bounded max) (bc i max)

where
is bounded n x = (x � n)

Note that obviously:

i ∈ [0, max] ⇒ is bounded max i

This fact will be useful in our proof.

131

Auxiliary Definitions and Lemmas

We will need to expand bc i max using the definition of bc in numerous places in

our proof, so we do so here:

bc i max

by definition of bc:

= loop (arr gateReqmax >>> dAccumHold i >>> arr dup) (1)

Note that the definition of gateReq refers to the value max passed as an argu-

ment to bc. Rather than expand the definition of gateReq , we will simply write

gateReqmax for brevity.

Let bcAux refer to the body of the argument to loop in (1):

bcAux i :: SF (Event (), Int) (Int , Int)

= arr gateReqmax >>> dAccumHold i >>> arr dup

by definition of dAccumHold :

= arr gateReqmax >>> accum i >>> dHold i >>> arr dup

by definition of dHold :

= arr gateReqmax >>> accum i >>> hold i >>> iPre i >>> arr dup

To prove that the counter is bounded, we will prove the following invariant

about the bounded counter implementation. With the invariant theorem (theo-

rem 9.2.1), this is sufficient to show that the counter is always bounded.

This invariant essentially asserts that for any i that is bounded by max, sam-

pling bcAux i results in a continuation of the form bcAux j where j is also bounded

by max.

132

Lemma 9.3.2 (Bounded Counter Invariant).

∀dt, a, i ∈ [0, max] . (∃j ∈ [0, max]. fst (sfTF (loop (bcAux i)) dt a) = (loop (bcAux j)))

Proof of Lemma 9.3.2: By equational reasoning and case analysis:

fst (sfTF (loop (bcAux i)) dt a)

by definition of loop:

= fst (loop bcAux ′, b)

where (bcAux ′, (b, c)) = (sfTF (bcAux i)) dt (a, c)

by definition of fst :

= loop bcAux ′

where (bcAux ′, (b, c)) = (sfTF (bcAux i)) dt (a, c)

Working out the right-hand side of the where clause:

By definition of bcAux , definition of >>> and associativity of >>>, we have:

(sfTF bcAux i) dt (a, c) =
(sf1 ′ >>> sf2 ′ >>> sf3 ′ >>> sf4 ′ >>> sf5 ′, b5)
where

(sf1 ′, b1) = (sfTF (arr gateReqmax)) dt (a, c)
(sf2 ′, b2) = (sfTF (accum i)) dt b1
(sf3 ′, b3) = (sfTF (hold i)) dt b2
(sf4 ′, b4) = (sfTF (iPre i)) dt b3
(sf5 ′, b5) = (sfTF (arr dup)) dt b4

Working backwards, we have:

By definition of arr :

(sf5 ′, b5) = (arr dup, (b4 , b4))

By definition of iPre :

(sf4 ′, b4) = (iPre b3 , i)

Hence we have b = i (sample of overall output signal) and c = i (sample of

feedback signal). However, we still need to work out values for sf1 ′ .. sf3 ′. To

133

work out these values, we appeal to the following two lemmas, which follow by

simple equational reasoning from the reference definitions given in chapter 4:

Lemma 9.3.3 (Hold Lemma). From the definition of hold :

(sfTF (hold n)) dt mbe = (hold x , x)
where x = (event n id) mbe

Lemma 9.3.4 (Accum Lemma). From the definition of accum:

(sfTF (accum n)) dt mbe = (accum x , y)
where x = (event n (app n)) mbe

y = fmap (app n) mbe
app x f = f x

Returning to our proof of lemma 9.3.2:

(sf3 ′, b3) = (sfTF (hold i)) dt b2

by Hold Lemma:

= (hold x3 , x3)

where x3 = (event i id) b2

(sf2 ′, b2) = (sfTF (accum i)) dt b1

by Accum Lemma:

= (accum x2 , y2)

where x2 = (event i (app i)) b1

y2 = fmap (app i) b1

(sf1, b1) = (sfTF (arr gateReqmax)) dt (a, c)

by definition of arr :

= (arrgateReq, gateReq(a, c))

hence:

134

b1 = gateReq (a, c)

By definition of gateReqmax :

= (a ‘gate ‘ (c < max)) ‘tag ‘ (+1)

By definition of gate :

= (if (c < max) then a else NoEvent) ‘tag ‘ (+1)

By definition of tag :

= fmap (const (+1)) (if (c < max) then a else NoEvent)

Substituting value of c:

= fmap (const (+1)) (if (i < max) then a else NoEvent)

We now do a case analysis on (a, i). There are three cases to consider:

case 1: a = NoEvent :

b1 = fmap (const (+1)) (if (i < max) then a else NoEvent)

substituting value of a:

= fmap (const (+1)) (if (i < max) then NoEvent else NoEvent)

by case analysis of if :

= fmap (const (+1)) NoEvent

by definition of fmap:

= NoEvent

y2 = fmap (app i) b1

by definition of fmap, b1 :

= NoEvent

135

x2 = (event i (app i)) b1

by definition of event , b1 :

= i

(sf2 ′, b2) = (accum i ,NoEvent)

x3 = (event i id) b2

by definition of event , b2 :

= i

(sf3 ′, b3) = (hold i , i)

sf4 ′ = iPre i

hence:

sfTF (bcAux i) dt (a, c)

= (arr gateReq >>> accum i >>> hold i >>> iPre i >>> arr dup, (i , i))

hence:

fst (sfTF (loop (bcAux i)) dt a)

= loop (arr gateReq >>> accum i >>> hold i >>> iPre i >>> arr dup)

= loop (bcAux i)

which, if we simply choose j = i, satisfies lemma 9.3.2.

case 2: a = Event (), i < max:

136

b1 = fmap (const (+1)) (if (i < max) then a else NoEvent)

by definition of if , value of a:

= fmap (const (+1)) (Event ())

by definition of fmap:

= Event (+1)

y2 = fmap (app i) b1

by definition of fmap, app, b1 :

= Event (i + 1)

(sf2 ′, b2) = (accum (i + 1),Event (i + 1))

x3 = (event i id) b2

by definition of event , b2 :

= i + 1

(sf3 ′, b3) = (hold (i + 1), i + 1)

sf4 ′ = iPre (i + 1)

hence:

sfTF (bcAux i) dt (a, c)

= (arr gateReq >>> accum (i + 1)

>>> hold (i + 1) >>> iPre (i + 1) >>> arr dup, (i , i))

137

hence:

fst (sfTF (loop (bcAux i)) dt a)

= loop (arr gateReq >>> accum (i + 1)

>>> hold (i + 1) >>> iPre (i + 1) >>> arr dup)

= loop (bcAux (i + 1))

which, if we choose j = i+1, satisfies lemma 9.3.2, since i < max⇒ (i+1) �

max ⇒ j ∈ [0, max].

case 3: a = Event (), i >= max:

b1 = fmap (const (+1)) (if (i < max) then a else NoEvent)

by definition of if , value of a, i :

= fmap (const (+1)) NoEvent

by definition of fmap:

= NoEvent

Since value of b1 is the same as case 1, rest of this case is identical to case 1.

9.4 Chapter Summary

This chapter explored how the operational semantics of chapter 4 can be used as a

basis for reasoning about Yampa programs. We presented an invariance theorem for

signal functions, and used this in a small example to prove that a signal function

implementing a bounded counter is always bounded.

138

Chapter 10

The Model / View / Controller (MVC)

Design Pattern in Fruit

The Model-View-Controller (MVC) design pattern [42], originally developed in

the context of Smalltalk-80, has been widely employed in many modern object-

oriented GUI libraries and applications, such as Java Swing [72] and Microsoft’s

Foundation Classes [47]. As a design pattern [24], MVC is a set of programming

conventions to be followed when designing a program or library interface. The

MVC design pattern makes it easy to add multiple views of the same data to an

application. For example, a spreadsheet application might allow one view as a

traditional two-dimensional table of numbers and another view as a bar graph of

the same data. Ideally, both views should be interactive, so that changes made

to the underlying data set in any view are reflected in all views. In the object-

oriented setting, the MVC design pattern suggests that the implementation should

be organized into three kinds of classes:

Models maintain the program state, provide a well-specified interface for updat-

ing and reading the program state, and allow registration of listeners to be

139

notified when the state has changed.

Views map the program state to a visual representation. Views register as listen-

ers on their corresponding models, to ensure that the view and the model

are always consistent.

Controllers handle input events (such as mouse and keyboard presses) and map

these primitive events into appropriate updates to the corresponding model.

The MVC design pattern is closely tied to the imperative, object-oriented pro-

gramming model for which it was developed. This chapter explores the imple-

mentation of the MVC design pattern in Fruit. State-encapsulating signal trans-

formers in Yampa (such as accumHold) naturally correspond with MVC’s notion

of models, lifted functions correspond naturally with views, and the event algebra

corresponds naturally to controllers. Nevertheless, there are still many important

open questions to explore. For example: what is the granularity of a particu-

lar MVC-style library design? Do individual GUI components like buttons and

sliders act as independent view/controller pairs, or may such components be

composed into larger user interfaces that are then connected to a more abstract

model? Is the model organized monolithically, or can it be broken down into mod-

ular pieces? This offers a basic account of MVC in Fruit that answers these ques-

tions.

10.1 “Shallow” MVC: Multiple Camera Views

We can really distinguish two kinds of views: passive and active. A passive view

observes the underlying data set, but does not provide any means for interacting

directly with the data set. The preview window of the icon editor is an example

140

(to window system)

(to master GUI)

GUIInput

Picture

Picture

GUIInput

Figure 10.1: Implementation of a view

of such a passive view. In contrast, an active view is interactive: user actions in

either view are reflected in other views and the underlying data set.

For many practical applications (such as icon editors, illustration programs,

etc.), the multiple views provided by the application are views of the same un-

derlying (time-varying) picture, with different affine transformations applied to

produce the view. For example, a zoomed-in view of an icon is a view of the same

picture as a zoomed-out view; the pictures differ only by a scaling transformation.

For simple cases such as this, multiple views may be added in Fruit to any GUI,

without any pre-meditation on the part of the original GUI programmer.

10.1.1 Passive Views

A view can be though of as “a GUI with no mind of its own”, as shown in fig-

ure 10.1. A view obtains its Picture signal from some external source and delivers

its GUIInput signal to some external source. Concretely, a view is a GUI that takes

a Picture signal as its auxiliary semantic signal, and uses this signal as its own

Picture signal. Similarly, it delivers its GUIInput signal as its auxiliary output sig-

nal. This describes a simple crossover configuration that leads to the following

definition:

141

Figure 10.2: Multiple Views

view :: GUI G .Picture GUIInput
view = arr swap

Given this definition, we can implement a version of Paddleball that has two

views next to each other, as shown in figure 10.2:

pbview :: Double → GUI () ()
pbview vel = proc (inpS ,)→ do

rec (picS , (activeIn,))←
(view ‘besideGUI ‘ view)−≺

(inpS , (gamePic, gamePic))
(gamePic,)← (rpball1 vel)−≺

(activeIn,Nothing)
returnA−≺ (picS , ())

In this implementation, there are two views adjacent to each other. The view on

the left is an active view, as its auxiliary input signal (activeIn) is fed as the input

signal to the actual rpball1 GUI. The view on the right is passive: Its picture signal

142

is the same (gamePic) signal as the active view on the left, but its GUIInput signal

is not connected to anything.

10.1.2 Multiple Active Views

Adding passive views to a GUI is certainly useful for many applications. But it is

much more interesting, useful and symmetric to provide multiple active views, so

that the user can interact with any view.

Recall from section 7.2 that we defined GUIInput to account for a focus model:

At every point in time, the visual input signal to a GUI is either (Nothing ,Nothing)

(when the component does not have focus), or (Just kbd , Just mouse) when the

GUI has mouse focus. Further, as described in section 7.3.1, the layout combina-

tors perform clipping as well as transformation to ensure that only the GUI under

the mouse receives (a transformed view of) the GUIInput signal. Recall, too, that

our programming model includes a set of event source combinators that operate on

signals of Maybe values.

Armed with this knowledge, we can now consider how to implement active

views. In the implementation of pbview , each view is passed to the besideGUI lay-

out combinator. The besideGUI combinator uses clipping and transformation to

demultiplex its input signal into two signals, one for each child. At every point

in time, one child’s input signal is (Just kbd , Just mouse) while the other’s is

(Nothing ,Nothing)). Regardless of which GUI has focus, the input signal will be

transformed into the child’s local coordinate system. Given this knowledge, it is

a simple matter to define a mergeGUIInput combinator that will merge two dis-

joint GUIInput signals back in to a single signal by favoring the Just values and

discarding the Nothing values. We define mvpball (“multi-view paddleball”) as:

-- combine two maybe values, favoring Just over Nothing:

143

merge :: Maybe a → Maybe a → Maybe a
merge mbeL mbeR = maybe mbeR id mbeL

mergeGUIInput :: GUIInput → GUIInput →
GUIInput

mergeGUIInput (mbkA,mbmA) (mbkB ,mbmB) =
(mbkA ‘merge‘ mbkB ,

mbmA ‘merge‘ mbmB)

mvpball :: Double → GUI () ()
mvpball vel = proc (inpS ,)→ do

rec (combinedPic, (leftIn, rightIn))←
(view ‘besideGUI ‘ view)−≺

(inpS , (masterPic,masterPic))
let mergedIn = mergeGUIInput leftIn rightIn
(masterPic,)← (rpball1 vel)−≺

(mergedIn, ())
returnA−≺ (combinedPic, ())

In this version of Paddleball, both views are treated symmetrically: The user can

play or press the restart button in either view, and the action is reflected in both

views.

Fruit is the only toolkit we are aware of that provides multiple active views

“for free”, without requiring any extra forethought or planning by the program-

mer of the original GUI.

10.2 Model/View/Controller In Fruit

While the provision of multiple camera views described in the previous section

is useful for some applications, camera views are a rather “shallow” interpreta-

tion of MVC, since the different views are always views of the same underlying

picture signal. In true MVC, the model is completely separate from the view and

controller. This makes it is possible to have entirely different visual presentations

and interaction styles in the multiple views, but have these views share a com-

mon underlying model. A change made in one of the interactive views should be

144

reflected in all of the other models.

10.2.1 GUI Component Refactoring

The Fruit programming interfaces to GUI components described in chapter 7 are

simple and convenient: Each component is just a single signal function with aux-

iliary input and output signals used to control and observe the component. Com-

plete GUIs are formed by specifying visual organization using layout combinators

and specifying behavior by wiring of auxiliary input and output signals.

Unfortunately, the simple GUI component programming interfaces presented

earlier are not quite capable of supporting a true Model/View/Controller sepa-

ration. One source of difficulty is that the programming interfaces to Fruit com-

ponents in chapter 7 often use continuous signals to convey auxiliary semantic

signals. The use of continuous signals is one of the attractions of the FRP / Yampa

model, as a continuous signal is a simple, natural way to represent dependencies

between different parts of a reactive program. For example, the label GUI takes a

continuous time-varying String as its input signal. The key benefit of this design

is that it reduces redundant state. In a conventional toolkit, a label would maintain

its own internal value for the string to appear in the label, and the programmer

would need to ensure that the localized state in the GUI is always synchronized

with the program state to which it corresponds. In contrast, the use of a con-

tinuous input signal to labels in Fruit enables a Fruit label to avoid having any

internal state; the string that appears in a label is simply the current value of the

label’s input signal.

However, the pervasive use of continuous signals raises problems for GUI

components that provide multiple views on to a single underlying model. The

problem is that, in many cases, the GUI component may provide a style of inter-

145

action that requires some amount of local state that is only periodically synchro-

nized against the underlying model state. For example, a text field allows editing

of the text within the field, but usually does not commit changes to the underlying

model until the user presses the “Enter” key.

The problem with providing a continuous signal is that, in the MVC paradigm,

any given GUI component needs to both observe the shared model state and allow

the user to update this model interactively. We might consider giving a text field

view/controller pair a type such as:

textFieldVC :: GUI String String

with the intention that that the auxiliary input signal would come from the model

and the auxiliary output signal would be connected to the model. The problem

with this approach is that there is no obvious way to merge the input and output

signals of multiple textFieldVC so that they share a common underlying model.

The approach that we have adopted in Fruit is to instead use events as the

input and output signals. The actual signature of a text field view/controller pair

is thus:

fTextFieldVC :: Int → GUI (Event String) (Event String)

The (static) argument gives the width of the field. In the resulting GUI, the aux-

iliary input signal is an event whose occurrence indicates that the field’s internal

state should be updated with the given String . The auxiliary output signal is an

event signal whose occurrence indicates that the model should be updated with

the given string.

The underling model for a simple String can be implemented as follows:

fModel :: a → SF (Event (a → a)) (Event a, a)
fModel v0 = accum v0 >>> (arr id &&& hold v0)

The model takes an initial value as its static argument. The input signal of the re-

sulting signal function is an event signal that specifies how to update the model’s

146

(a) (b) (c)

(d)

Figure 10.3: A Shared Model with Local Editing

internal state. The output is a pair of signals: An event indicating when the model

has been updated as well as a continuous view of the model. This latter signal en-

ables the model’s output to be fed directly to signal functions or GUI components

(such as labels) that expect a continuous input signal.

It is now fairly straightforward to create GUIs that share a common model. For

example, here is a pair of textFieldVC wired to a common input signal:

vcPairGA :: GA (Event String) (Event String ,Event String)
vcPairGA = vbox (vc &&& vc)

where vc = box $ GA $ fTextFieldVC 40

These can then be wired to share a common model as follows:

sharedModelFields :: GA () ()
sharedModelFields = vbox $ proc → do

rec (vcChE1 , vcChE2)← box vcPairGA−≺ mChE
(mChE ,)← boxSF (fModel "")−≺ fmap const (vcChE1 ‘merge‘ vcChE2)

returnA−≺ ()

The result of executing sharedModelFields is shown in figure 10.3. Figure 10.3(a)

shows the resulting of typing some text in to the first text field. Note that char-

acters typed in to the first field are not immediately reflected in the second field.

Figure 10.3(b) shows the result of hitting Enter in the first text field: the contents

of the text field are committed to the shared model, which results in immediately

147

updating the second field. Figures 10.3(c) and 10.3(d) reflect the symmetric nature

of this wiring: Figure 10.3(c) shows the result of typing some text in to the second

text field, and figure 10.3(d) shows the result immediately after pressing Enter in

the second text field.

10.3 Chapter Summary

This chapter described the Model / View / Controller (MVC) design pattern com-

monly used in imperative object-oriented GUI toolkits. We presented a variation

on MVC, multiple camera views, and showed that a unique property of Fruit’s

explicit dataflow framework is that multiple camera views can be provided with-

out any effort by the programmer. We then showed how the programming model

for Fruit GUI components presented in chapter 7 can easily be adapted to support

the more classical notion of MVC, and presented a small example to demonstrate

multiple text field components with local editing sharing a common model.

148

Chapter 11

Application Case Studies

This chapter presents a number of application programs written using Fruit, Yampa

and Haven. The first example, a simple three button media controller, is small

enough to allow us to present the complete source code for the Fruit specifica-

tion and (for contrast) to examine the essential details of a traditional imperative,

object-oriented implementation. The next example, a web browser with interac-

tive history, illustrates using Fruit to write a precise specification of how com-

ponents of a user interface interact with the underlying time-varying application

state. Finally, we present a complete interactive video game (“Space Invaders”)

implemented in Yampa, to illustrate Yampa’s scalability, support for dynamic col-

lections, and the use of signal functions in constructing simulations.

11.1 A Media Controller

As a concrete example of a Fruit specification, consider the classic VCR-style me-

dia controller illustrated in figure 11.1. The control panel provides a user interface

to the simple finite state machine shown in figure 11.2. Each button is only en-

149

Figure 11.1: Basic Media Controller

Stopped

PausedPlaying
playE

pauseE

st
op
EstopEplayE

Figure 11.2: Media Controller Finite State Machine

abled if pressing the button is a valid action in the application’s current state.

The implementation of the media controller in Fruit is easily derived from the

state machine in figure 11.2, and is shown in figure 11.3. The implementation uses

an enumerated type to encode the current state1:

data MediaState = Playing | Paused | Stopped

Each of the three buttons is made by fbutton , and playE, pauseE and stopE are

1In C, this might be written as: typedef enum {PLAYING, PAUSED, STOPPED} MediaState;

Playing

Paused

Stopped

enabled:

 (state/=Playing)

enabled:

 (state==Playing)

enabled:

 (state/=Stopped)

hold

Stopped
stopE

pauseE

playE
tag

tag

tag

mergeE

mergeE state
nextStateE

Figure 11.3: Media Controller Implementation

150

the output signals from each button (of type Event ()). Each event occurrence

is tagged with its corresponding state, and these event signals are merged to form

a single event signal, nextStateE, whose occurrences carry the next state. The

nextStateE event signal is fed to the hold primitive to form a continuous signal,

state, representing the current state. Recall from chapter 4 that the hold primitive

provides a continuous view of a discrete event signal by “latching” (or holding) the

value of the last event occurrence across a period of non-occurrences, as illustrated

in figure 2.5. Finally, the enabled property of each button is determined by a

simple predicate applied point-wise to the state signal. Each equation is derived

directly from the state transition diagram of figure 11.2 by inspection.

Note that this diagram only illustrates the wiring of the auxiliary semantic sig-

nals of each button; the GUIInput and Picture signals have been omitted, because

they are handled implicitly by the Box arrow of section 7.4.

The textual syntax for the media controller corresponds directly to the visual

syntax of figure 11.3:

playerCtrl :: GUI () MediaState
playerCtrl = hbox (proc → do

enabled (state �≡ Playing)
�−fbutton (btext "Play")→ playE

enabled (state ≡ Playing)
�−fbutton (btext "Pause")→ pauseE

enabled (state �≡ Stopped)
�−fbutton (btext "Stop")→ stopE

(mergeE (tag playE Playing)
(mergeE (tag pauseE Paused)

(tag stopE Stopped)))
�−boxSF (dHold Stopped)→ state

state �−returnA)

This definition makes use of recursive bindings. In this case, state is used in the

expression for the input signals on the first three lines, but is not defined until

the line preceding ... �−returnA. In this example, the dHold primitive introduces

151

a delay between its event signal input and continuous output to ensure that the

feedback loop is well formed. While the introduction of delays might appear sub-

tle and arbitrary at first glance, in practice it is almost always obvious where to

introduce the delays in a specification.

To complete the interface of figure 11.1, we place playCtrl and a label in a ver-

tical box, and connect the state output signal of playCtrl to the input signal of the

label:2

player :: GUI () ()
player = vbox (proc → do

() �−box playerCtrl → state
(ltext ("state: "++ (show state))) �−label)

A connection between point-wise computations and one-way constraints is ap-

parent in the specifications of playCtrl and player : We can interpret the input sig-

nal to each button as a constraint specifying the relationship between the enabled

property of the button and a predicate applied to the state signal. Similarly, we

can interpret the input signal to the label as constraint that specifies that, at every

point in time, the label’s text property must be equal to the given string expression

computed from state.

11.2 A Web Browser with Interactive History

In this section, we develop another, slightly larger example application: a web

browser with a navigable interactive history mechanism. This example will il-

lustrate how applications are composed from existing components in Fruit, and

demonstrate the utility of signals and signal functions for giving a concise, rigor-

ous specification of the connection between an application’s internal time-varying

2Here show has type (MediaState → String); the ++ operator is Haskell’s string concatenation
operator.

152

Figure 11.4: A Simple Web Browser

state and the graphical user interface presented to the user.

The user interface to the web browser is shown in figure 11.4. The (editable)

text field adjacent to the “Location:” label displays the URL of the document

shown in the text pane. The user may navigate by:

• Pressing either of the “Back” or “Forward” buttons will navigate to the pre-

vious or next document in the history list. (Note that the “Forward” button

is disabled in figure 11.4, which indicates that the browser is positioned at

the end the history list. Similarly, the “Back” button is disabled when the

browser is positioned at the start of the history list.)

• Typing an URL explicitly in the “Location:” text field will jump to the docu-

ment referenced by that URL.

• Clicking on a hypertext link in the document will jump to the document

referenced by the URL embedded in the hypertext link.

Note that this informal specification is rather imprecise, since it does not specify

exactly how these actions affect the history list or current position in that list. We

153

will rectify this situation shortly.

11.2.1 Basic Components

To start with, we will assume definitions for a text field and html pane as basic GUI

components:

textField :: Int → GUI (Event String) (Event String)
htmlPane :: GUI (Event String) (Event String)

The textField function takes a static value (giving the width of the text field), and

returns a GUI . Internally, the text field component maintains a local edit buffer, that

the user may edit using key strokes, and edit keys (backspace, etc.). The auxiliary

input signal to the text field GUI is an event source that resets the text field’s local

edit buffer to the string carried with the event occurrence. The output signal of

the text field is an event source that occurs whenever the user commits the contents

of the text field (by typing the ENTER key, for example). The event occurrence

carries the contents of the text field’s local edit buffer.

The htmlPane is a GUI capable of loading and rendering a document writ-

ten in the HyperText Markup Language (HTML). The auxiliary input signal to

htmlPane is an event source whose occurrences carry a string that gives the Uni-

form Resource Locator (URL) of a document to display in the pane. The output

signal is an event that occurs when the user clicks on a hyper-text link appearing

in the pane with the mouse. The event occurrence carries the URL associated with

the link the user selected.

To start with, we can combine the text label (“Location:”) with the text entry

field to form a larger GUI component that obeys the same interface as a textField :

locBar :: GUI (Event String) (Event String)
locBar = hbox \$ proc setUrlE → do

ltext "Location: " �−label

154

setUrlE �−textField 40

11.2.2 A History-less Browser

As a first experiment, we can compose the location bar component with the html-

Pane to form a rudimentary browser that doesn’t support interactive history:

-- A simple web browser (no history mechanism)
browser0 :: GUI () ()
browser0 = vbox $ proc → do

rec setUrlE �−box locBar → urlTypedE
setUrlE �−htmlPane → linkClickE
let setUrlE = urlTypedE ‘mergeE ‘ linkClickE

() �−returnA

This actually forms a complete working mini-browser. When executed, browser0

appears similar to figure 11.4, without the “Back” and “Forward” buttons at the

top. The user may navigate by typing an URL or clicking on a link. In either

case, the URL of the document displayed in the html pane appears in the text

field of the location bar. This is controlled by a simple feedback loop in the wiring

structure: the event source setUrlE is formed by point-wise merging of the event

sources urlTypedE and linkClickE . This merged event source is then fed as the

input signal to both the location bar and the html pane.

Since we would like to use the user interface of browser0 in our history-sensitive

browser, with a slight modification we make a re-usable browserPane component:

browserPane :: GUI (Event String) (Event String)
browserPane = vbox \$ proc setUrlE → do

setUrlE �−box locBar → urlTypedE
setUrlE �−htmlPane → linkClickE
let urlEnteredE = urlTypedE ‘mergeE ‘ linkClickE
urlEnteredE �−returnA

This is almost exactly the same as browser0 , except that the setUrlE event source

is taken from the component’s input signal, and urlEnteredE is delivered as the

155

component’s output signal. (Of course, we could easily derive browser0 from

browserPane by simply wiring browserPane’s output signal to its input.)

11.2.3 Modeling Interactive History

We wish to develop a model of an interactive history list, and relate this to the

GUI of our web browser. In this section, we will show that the history list can

be modeled simply and naturally as a signal function, and show how the imple-

mentation can be derived systematically by answering a few basic questions. This

approach corresponds closely to the design methodology typically used to specify

(and derive) synchronous digital circuits [46]:

1. What is the application state? We will model the history list as a time-varying

pair whose components are: the list of URLs that comprise the history, and

an integer index giving the browser’s “current position” in the history list.

A snapshot of history list state at any point in time is thus:

-- The history state is a history position and
-- a list of URLs:

type HistState = (Int , [String])

2. What signals from the GUI affect the application state? This determines the in-

put signals to our history list model. For this example, the application state

depends on events from the GUI. We can divide GUI events into two kinds:

events in which the user selects an URL (either by typing it explicitly or

clicking on a hypertext link), and navigation events (clicking on the “For-

ward” or “Back” buttons). Events of the former type carry a String (giving

the URL); and we will require events of the latter type to carry an Int giving

the amount (either +1 of −1) to adjust the history position.

156

3. How do the signals from the GUI affect the application state? The following func-

tions specify how the history list state reacts to each kind of input event.

Each reaction is specified as a Curried function, which takes the event da-

tum to a State → State function.

-- go to a specified URL
goUrl :: String → HistState → HistState
goUrl url (pos , hList) = (0, url : (drop pos hList))

-- Adjust the current position in the history list
-- by the specified offset:

hStep :: Int → HistState → HistState
hStep off (pos , hList) = (pos + off , hList)

4. How does the GUI depend on the application state? This question determines

the output signals of our model. In this case, we need to provide two con-

nections to the GUI: A next URL event that specifies the next URL to display

in the browserPane, and the current position and maximum valid index (call it

histMax) in the history list. These latter two signals are used to determine

the enabled state of the forward and back buttons.

With these questions answered, we can thus derive the history list as a signal

function:

histList :: SF (Event String ,Event Int)
(Event String , Int , Int)

histList = proc (urlSelectE , navStepE)→ do
rec

-- bind an appropriate state update
-- function to each event source:

let stepE = fmap hStep navStepE
let locE = fmap goUrl urlSelectE

-- merge navigation event sources into a
-- single event source:

let navE = locE ‘mergeE ‘ stepE

-- accumulate navE events over time:
navE �−accum state0 → nextStateE

157

-- use a hold operator to obtain a continuous
-- view of the state:

nextStateE �−dHold state0 → (histPos , histList)

let histMax = (length histList)− 1
-- map next state event to next url event:

let nextUrlE = fmap getUrl nextStateE

(nextUrlE , histPos , histMax) �−returnA

Composing the navigation bar (consisting of the “Forward” and “Back” buttons)

is now straightforward:

navBar :: GUI (Int , Int) (Event Int)
navBar = hbox $ proc (histPos , histMax)→ do

(btext "Back" ◦
enabled (histPos < histMax)) �−button → bPressE

(btext "Forward" ◦
enabled (histPos > 0)) �−button → fPressE

let navStepE = (bPressE ‘tag ‘ 1) ‘mergeE ‘ (fPressE ‘tag ‘ (−1))
navStepE �−returnA

Once again, the connection between point-wise computations and one-way con-

straints is apparent in this definition: We can interpret the enabled part of the input

signal to the “Back” button as a constraint specifying that, at every point in time,

the enabled state of the button must be equal to the predicate (histPos < histMax).

The output signal of the navigation bar is formed by tagging the event from each

button with an integer offset to be applied to the current position in the history

list and merging these event sources.

Finally, we can combine the navigation bar, browser pane and history list into

a complete browser with interactive history:

hbrowser :: GUI () ()
hbrowser = vbox $ proc → do

rec (histPos , histMax) �−box navBar → navStepE
nextUrlE �−box browserPane → urlSelectE
(urlSelectE , navStepE)
�−boxST histList →

(nextUrlE , histPos, histMax)
() �−returnA

158

Figure 11.5: Screen-shot of Space Invaders

This completes the implementation of the browser shown in figure 11.4.

11.3 An Interactive Video Game

In this section, we present an implementation of Space Invaders, a complete in-

teractive video game. In addition to illustrating that Yampa can be used for full

scale applications, the game makes extensive use of dynamic collections, and the

parallel and continuation-based switching primitives described in chapter 8.

11.3.1 Game Play

Our version of Space Invaders is based on the classic 2-D arcade game of the same

name. This section briefly describes the game, and will serve as a highly infor-

mal requirements specification. A screen-shot of our Space Invaders is shown in

159

figure 11.5.

Aliens are invading a planet in a galaxy far, far away, and the task of the player

is to defend against the invasion for as long as possible. The invaders, in flying

saucers, enter the game at the top of the screen. Each alien craft has a small engine

allowing the ship to maneuver and counter the gravitational pull. The thrust of

the engine is directed by turning the entire saucer, i.e. by adjusting its attitude.

Aliens try to maintain a constant downward landing speed, while maneuvering

to horizontal positions that are picked at random every now and again.

The player controls a gun (depicted as a triangle) that can move back and forth

horizontally along the bottom of the screen. The gun’s horizontal position is con-

trolled (indirectly) by the mouse.

Missiles are fired by pressing the mouse button. The initial position and veloc-

ity of the missile is given by the position and velocity of the gun when the gun is

fired. The missiles are subject to gravity, like other objects. To avoid self-inflicted

damage due to missiles falling back to the planet, missiles self-destruct after a

preset amount of time.

There are also two repelling force fields, one at each edge of the screen, that

effectively act as invisible walls.3 Moving objects that happens to “bump” into

these fields will experience a fully elastic collision and simply bounce back.

The shields of an alien saucer are depleted when the saucer is hit by a mis-

sile. Should the shields become totally depleted, the saucer blows up. Shields

are slowly recharged when below their maximal capacity, however. Whenever all

aliens in a wave of attack have been eliminated, the distant mother ship will send

a new wave of attackers, fiercer and more numerous than the previous one. The

3It is believed that they are remnants of an ancient defense system put in place by the techno-
logically advanced, mythical Predecessors.

160

game ends when an alien successfully lands on the planet.

11.3.2 Game Objects

As described in section 11.3.1, there are three essential entities or objects in the

space invaders game: the gun, the invaders and the missiles. They all react to

external events and stimuli, such as collisions with other objects and control com-

mands from the player; i.e., they are reactive. This section explains how to de-

velop and test such reactive objects in Yampa by presenting an implementation of

a somewhat simplified gun. This serves as a good introduction to section 11.3.3,

where the implementation of the real game is presented in detail. However, this

section also exemplifies a useful Yampa development strategy where individual

reactive objects are first developed and tested in isolation, and then wired together

into more complex systems. The last step may require some further refinement of

the individual object implementations, but the required changes are usually very

minor.

Implementing a Gun

Each game object produces time-varying output (such as its current position) and

reacts to time-varying input (such as the mouse-controlled pointer position). The

gun, for example, has a time-varying position and velocity and will produce an

output event to indicate that it has been fired. On the input side, the gun’s position

is controlled with the mouse, and the gun firing event is emitted in response to the

mouse button being pressed. We can thus represent the gun with the following

types:

data SimpleGunState = SimpleGunState{
sgsPos :: Position2 ,

161

sgsVel :: Velocity2 ,
sgsFired :: Event ()
}
type SimpleGun = SF GameInput SimpleGunState

where GameInput is an abstract type representing a sample of keyboard and mouse

state, and Position2 and Velocity2 are type synonyms for 2-dimensional vectors.

A simple physical model and a control system for the gun can be specified in

just a few lines of Yampa code:

simpleGun :: Position2 → SimpleGun
simpleGun (Point2 x0 y0) = proc gi → do

(Point2 xd)← ptrPos−≺ gi
rec

-- Controller
let ad = 10 ∗ (xd − x)− 5 ∗ v

-- Physics
v ← integral−≺ clampAcc v ad
x ← (x0+) ˆ << integral−≺ v

fire ← leftButtonPress−≺ gi
returnA−≺ SimpleGunState{

sgsPos = (Point2 x y0),
sgsVel = (vector2 v 0),
sgsFired = fire
}

In the first line in the body of simpleGun, the horizontal position of the pointer is

extracted from the GameInput signal using the ptrPos signal function (provided

by the bindings to the graphics library). We could, of course, simply define the

position of the gun to be that of the pointer. However, to add some degree of

physical realism, the model of the gun includes inertia and adds bounds on the

acceleration and velocity. The position of the pointer is thus interpreted as the

gun’s desired horizontal position, xd , and a control system is then used to compute

the desired acceleration, ad , based on the difference between the current and de-

sired position and the current velocity. The goal of the control system is to make

162

the gun reach the desired position quickly subject to the physical constraints.4

The bounds on the acceleration and velocity are imposed through the auxiliary

function clampAcc:

clampAcc v ad =
let a = symLimit gunAccMax ad
in if (−gunSpeedMax) � v ∧ v � gunSpeedMax
∨ v < (−gunSpeedMax) ∧ a > 0
∨ v > gunSpeedMax ∧ a < 0
then a
else 0

limit ll ul x = max ll (min ul x)

symLimit l = limit (−abs l) (abs l)

The equations for the velocity v and horizontal position x are simply Newton’s

laws of motion, stated in terms of integration:

integral :: VectorSpace a k ⇒ SF a a

Testing the Gun

Individual game objects such as simpleGun can be tested in isolation using reactimate

(described in section 2.11). To test simpleGun we simply define an ordinary Haskell

function to render a gun state as a visual image, and compose (using >>>) simpleGun

with a lifted (using arr) version of this function:

renderGun :: SimpleGunState → G .Graphic
renderGun = ...

gunTest :: IO ()
gunTest = runGame (simpleGun >>> arr renderGun)

runGame is defined using reactimate and suitable IO actions for reading an input

event from the window system and rendering a graphic on the screen. Executing

gunTest will open a window in which the gun can be positioned using the mouse.

4The control system coefficients in this example have not been mathematically optimized.

163

11.3.3 The Game Proper

Game Structure

In section 11.3.2 we showed that individual game objects could be implemented

as signal functions. However, in order to form a complete game, we will need

a collection of game objects (the gun, aliens and missiles) that are all active si-

multaneously. We will also need some facility to add or remove objects from the

game in response to events such as missiles being fired and missiles hitting tar-

gets. Thus the collection has to be dynamic. Moreover, the implementation of the

gun in section 11.3.2 only reacted to external mouse input, whereas in the actual

game objects will also need to react to each other.

The addition and deletion of signal functions constitute structural changes

of the network of interconnected active signal functions. In Yampa, structural

changes are effectuated by means of switching between modes of continuous op-

eration. In particular, Yampa provides a family of parallel switching combinators

that allow collections of signal functions to be simultaneously switched in to and

out of the network of active signal functions as a group. When switched in, the

signal functions in these collections are connected in parallel (hence the name par-

allel switch). The collections are allowed to change at the points of switching, in

effect allowing them to be dynamic. Combining parallel switching with feedback

enables game objects to interact in arbitrary ways. Figure 11.6 shows the resulting

overall structure of the game.

The design and implementation of Yampa’s parallel switching combinators is

described in detail elsewhere [56]. Here we will focus on how to use one partic-

ular parallel switching combinator, dpSwitch, in the context of the Space Invaders

game. As illustrated in figured 11.6, there are two key aspects of maintaining the

164

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

Figure 11.6: Dynamic collection of game objects maintained by dpSwitch.

dynamic collection which are under control of the user of dpSwitch:

• The route function, which specifies how the external input signal to the col-

lection is distributed (or “routed”) to individual members of the collection.

• The killOrSpawn function, which observes the output of the collection (and

possibly the external input signal) and determines when signal functions are

added to or removed from the collection.

In order to specify these two functions, we must first develop a clear understand-

ing of how the different members of the collection interact with one another and

the outside world, and under what circumstances signal functions are added to or

removed from the collection. We will do that in the next section.

The Object Type

The type of dpSwitch requires that all signal functions in the dynamic collection

to be maintained by dpSwitch have a uniform type. For our Space Invaders game,

165

we use the following type for all game objects:

type Object = SF ObjInput ObjOutput

We must ensure that the types for the input and output signal (ObjInput and

ObjOutput) of this common type are rich enough to allow us to implement all

necessary interactions between game objects. Based on a careful reading of the

requirements in section 11.3.1, a concise specification of the interactions between

game objects is as follows:

• A missile is spawned when the gun is fired.

• Missiles are destroyed when they hit an alien craft or when they self-destruct

after some finite time.

• An alien craft is destroyed when it has been sufficiently damaged from a

number of missile hits.

The analysis makes it clear that game objects react only to collisions with other

objects and external device input. Hence we can define the ObjInput type as fol-

lows:

data ObjInput = ObjInput{
oiHit :: Event (),
oiGameInput :: GameInput
}

On the output side, we observe that there are really two distinct kinds of outputs

from game objects. First, there is the observable object state, consisting of things like

the position and velocity of each object that must be presented to the user and that

must be available to determine object interactions (such as collisions). Second,

there are the events that cause addition or removal of signal functions from the

dynamic collection, such as the gun being fired or an alien being destroyed. This

leads to the following type definition:

166

data ObjOutput = ObjOutput{
ooObsObjState :: !ObsObjState,
ooKillReq :: Event (),
ooSpawnReq :: Event [Object]
}

The ooObsObjState field contains the observable object state of type ObsObjState:

data ObsObjState =
OOSGun{

oosPos :: !Position2 ,
oosVel :: !Velocity2 ,
oosRadius :: !Length,
}
| OOSMissile{

oosPos :: !Position2 ,
oosVel :: !Velocity2 ,
oosRadius :: !Length
}
| OOSAlien{

oosPos :: !Position2 ,
oosHdng :: !Heading ,
oosVel :: !Velocity2 ,
oosRadius :: !Length
}

Note in the above that the constructors differentiate the different kinds of game

objects. However, the oosPos, oosVel and oosRadius fields are common to each

alternative. This simplifies the implementation of many functions (such as colli-

sion detection), since collision detection can simply apply oosPos and oosRadius

to any observable object state value, without concern for the kind of game object

that produced this value.

The ooKillReq and ooSpawnReq fields are object destruction and creation events,

passed to killOrSpawn by dpSwitch. On an occurrence of ooKillReq , the originating

object is removed from the collection. On an occurrence of ooSpawnReq, the list

of objects tagged to the event will be spliced in to the dynamic collection. A list

rather than a singleton object is used for the sake of generality. For example, this

167

allows an exploding alien craft to spawn a list of debris.

Gun Behavior

We now turn to describing the behavior of the game objects. This section covers

the gun; the next section deals with the aliens. We leave out the missiles since

that code is basically a subset of the code describing the alien behavior. Section

11.3.2 explained the basic idea behind modeling game objects using signal func-

tions. With that as a starting point, we have to develop objects that conform to

the GameObject type and interact properly with the world around them and the

object creation and destruction mechanism.

The resulting code for the gun is very similar to what we have already seen:

gun :: Position2 → Object
gun (Point2 x0 y0) = proc oi → do

let gi = oiGameInput oi
(Point2 xd)← ptrPos−≺ gi

rec
-- Controller

let ad = 10 ∗ (xd − x)− 5 ∗ v

-- Physics
v ← integral−≺ clampAcc v ad
x ← (x0+) ˆ << integral−≺ v

fire ← leftButtonPress−≺ gi
returnA−≺

ObjOutput{
ooObsObjState = oosGun (Point2 x y0)

(vector2 v 0),
ooKillReq = noEvent ,
ooSpawnReq =

fire ‘tag ‘
[missile

(Point2 x (y0 + (gunHeight / 2)))
(vector2 v missileInitialSpeed)]

}
missile :: Position2 → Velocity2 → Object
missile p0 v0 = proc oi → do ...

168

The only significant change is the interaction with the object creation and destruc-

tion mechanism. Note how noEvent is used to specify that a gun never removes

itself from the dynamic collection, and how a signal function representing a new

missile is tagged onto the fire event, yielding an object creation event.

Alien Behavior

This section presents the code describing the behavior of aliens. Like the gun, the

description contains a simple physical model along with a control system, the only

difference being that aliens move in two dimensions. Unlike the gun, the target

for the control system is generated internally, partly through a random process.

Also unlike the gun, aliens can be destroyed, which happens when their shields

become depleted.

alien :: RandomGen g ⇒
g → Position2 → Velocity → Object

alien g p0 vyd = proc oi → do
rec

-- Pick a desired horizontal position
rx ← noiseR (xMin, xMax) g−≺ ()
smpl ← occasionally g 5 ()−≺ ()
xd ← hold (point2X p0)−≺ smpl ‘tag ‘ rx

-- Controller
let axd = 5 ∗ (xd − point2X p)
− 3 ∗ (vector2X v)
ayd = 20 ∗ (vyd − (vector2Y v))
ad = vector2 axd ayd
h = vector2Theta ad

-- Physics
let a = vector2Polar

(min alienAccMax
(vector2Rho ad))

h
vp ← iPre v0−≺ v
ffi ← forceField−≺ (p, vp)
v ← (v0ˆ + ˆ) ˆ << impulseIntegral

−≺ (gravity ˆ + ˆ a,ffi)

169

p ← (p0 . + ˆ) ˆ << integral−≺ v

-- Shields
sl ← shield−≺ oiHit oi
die ← edge−≺ sl � 0

returnA−≺ ObjOutput{
ooObsObjState = oosAlien p h v ,
ooKillReq = die,
ooSpawnReq = noEvent
}

where
v0 = zeroVector

Picking a desired position is accomplished by occasionally sampling a noise sig-

nal. The signal function noiseR generates a random signal (noise) in the specified

interval. The signal function occasionally is an event source for which the average

event occurrence density can be specified. In this case, events occur on average

once every 5 seconds. Thus, on each such occurrence, the noise source is sampled

by tagging its value rx to the sample event smpl . A piecewise continuous signal

indicating the desired horizontal position at all points in time is then obtained by

feeding the discrete noise samples through the signal function hold . The typings

for these signal functions are as follows:

noiseR :: (RandomGen g ,Random a)⇒
(a, a)→ g → SF () a

occasionally :: RandomGen g ⇒
g → Time → b → SF a (Event b)

hold :: a → SF (Event a) a

The output from the control system is the desired acceleration ad , a 2-dimensional

vector. The horizontal component of this vector axd is computed based on the dif-

ference between the current horizontal position and desired horizontal position,

along with the current velocity. The vertical component ayd is given by a simple

proportional controller that tries to maintain a constant vertical velocity by com-

paring the desired vertical speed with the actual vertical speed. The direction of

170

the desired acceleration vector in turn gives the attitude h of the alien craft.5

In the physical model, the real acceleration a is obtained by limiting the desired

acceleration according to the capability of the craft. The velocity v and position p

of the craft are then given by integration of the sum of the acceleration from the

craft’s engines and the gravity in two steps according to Newton’s laws of motion.

The force field is modeled by the auxiliary signal function forceField . It outputs an

impulsive force ffi , modeled as an event, whenever an alien craft bumps into the

force field. The orientation and magnitude of this impulsive force is such that the

craft experiences an instantaneous, fully elastic collision. The effect of impulsive

forces acting on the craft, a discontinuous change in velocity, is taken into account

through the use of the signal function impulseIntegral rather than integral in the

equation for the velocity.6

impulseIntegral :: VectorSpace a k ⇒
SF (a,Event a) a

The shield is modeled by the auxiliary signal function shield . Its output is the

present shield level sl . Its input are events indicating that the craft has been hit

by a missile, which causes the shield level to drop. Countering this, the shield is

recharged at a constant rate, up to a maximal level. The shield level is monitored,

and should it drop below zero, an event die is generated that indicates that the

craft has been destroyed. The die event is defined using Yampa’s edge detector

primitive: edge :: SF Bool (Event ()).

Finally, the output signal is defined. The position p, attitude h, and velocity

v make up the observable object state. The die event is made into a kill request,

while noEvent is used to specify that alien crafts do not spawn any other objects.

5Rotational inertia is not modeled: it is assumed that the alien craft can change direction in-
stantaneously.

6The second author has developed a more systematic alternative based on Dirac impulses [55].

171

Maintaining Dynamic Collections

We will now put the pieces we have developed thus far together into a complete

game, as outlined in figure 11.6. Thus we have to use dpSwitch to maintain a

dynamic collection of game objects, we have to design the control mechanism

for adding and deleting objects (killAndSpawn), and we have to set up the proper

interconnection structure by means of the dpSwitch routing function and feedback.

dpSwitch has the following signature:

dpSwitch :: Functor col ⇒
(forall sf ◦ (a → col sf → col (b, sf)))
→ col (SF b c)
→ SF (a, col c) (Event d)
→ (col (SF b c)→ d → SF a (col c))
→ SF a (col c)

The first argument is the routing function. Its purpose is to pair up each running

signal function in the collection maintained by dpSwitch with the input it is going

to see at each point in time. The rank-2 universal quantification of sf renders the

members of the collection opaque to the routing function; all the routing func-

tion can do is specify how the input is distributed. The second argument is the

initial collection of signal functions. The third argument is a signal function that

observes the external input signal and the output signals from the collection in or-

der to produce a switching event. In our case, this is going to be the killAndSpawn

function alluded to in figure 11.6. The fourth argument is a function that is in-

voked when the switching event occurs, yielding a new signal function to switch

into based on the collection of signal functions previously running and the value

carried by the switching event. This allows the collection to be updated and then

switched back in, typically by employing dpSwitch again.

The collection argument to the function invoked on the switching event is of

particular interest: it captures the continuations of the signal functions running

172

in the collection maintained by dpSwitch at the time of the switching event, thus

making it possible to preserve their state across a switch. Since the continuations

are plain, ordinary signal functions, they can be resumed, discarded, stored, or

combined with other signal functions.

In order to use dpSwitch, we first need to decide what kind of collection to use.

In cases where it is necessary to route specific input to specific signal functions in

the collection (as opposed to broadcasting the same input to everyone), it is often

a good idea to “name” the signal functions in a way that is invariant with respect

to changes in the collection. For our purposes, an association list will do just fine,

although we will augment it with a mechanism for generating names automat-

ically. We call this type an identity list, and its type declaration along with the

signatures of some useful utility functions, whose purpose and implementation

should be fairly obvious, are as follows:

type ILKey = Int
data IL a = IL{ilNextKey :: ILKey ,

ilAssocs :: [(ILKey, a)]}
emptyIL :: IL a
insertIL :: a → IL a → IL a
listToIL :: [a]→ IL a
elemsIL :: IL a → [a]
assocsIL :: IL a → [(ILKey, a)]
deleteIL :: ILKey → IL a → IL a
mapIL :: ((ILKey, a)→ b)→ IL a → IL b

IL is of course also an instance of Functor . Incidentally, associating some extra

state information with a collection, like ilNextKey in this case, is often a quite

useful pattern in the context of dpSwitch.

Let us use dpSwitch to implement the core of the game:

gameCore :: IL Object
→ SF (GameInput , IL ObjOutput)

(IL ObjOutput)
gameCore objs =

173

dpSwitch route
objs
(arr killOrSpawn >>> notYet)
(λsfs ′ f → gameCore (f sfs ′))

We will return to the details of the routing function and killOrSpawn below. But

the basic idea is that the switching event from killOrSpawn carries a function that

when applied to the collection of continuations yields a new signal function col-

lection to switch into. That in turn is achieved by invoking gameCore recursively

on the new collection.

killOrSpawn in a plain Haskell function that is lifted to the signal function level

using arr . The resulting signal function is composed with notYet ::SF (Event a) (Event a)

that suppresses initial event occurrences. Thus the overall result is a source of kill

and spawn events that will not have any occurrence at the point in time when it is

first activated. This is to prevent gameCore from getting stuck in an infinite loop of

switching. The need for this kind of construct typically arises when the source of

the switching events simply passes on events received on its input in a recursive

setting such as the one above. Since switching takes no time, the new instance of

the event source will see the exact same input as the instance of event source that

caused the switch, and if that input is the actual switching event, a new switch

would be initiated immediately, and so on for ever.

The routing function is straightforward. Its task is to pass on the game input

to all game objects, and to detect collisions between any pair of interacting game

objects and pass hit events to the objects involved in the collision:

route :: (GameInput , IL ObjOutput)→ IL sf
→ IL (ObjInput, sf)

route (gi , oos) objs = mapIL routeAux objs
where

routeAux (k , obj) =
(ObjInput{oiHit = if k ∈ hs

then Event ()

174

else noEvent ,
oiGameInput = gi },
obj)

hs = hits (assocsIL
(fmap ooObsObjState oos))

route invokes the auxiliary function hits that computes a list of keys of all objects

that are involved in some collision. For all game objects, it then checks if the key

of that object is contained in the list of colliding objects. If so, it sends a collision

event to the object, otherwise not. hits performs its computation based on the

fed-back object output. This gives the current position and velocities for all game

objects. Two objects are said to collide if they partially overlap and if they are

approaching each other. However, alien crafts do not collide in this version of the

game.

killOrSpawn traverses the output from the game objects, collecting all kill and

spawn events. If any event occurs, a switching event is generated that carries a

function to update the signal function collection accordingly:

killOrSpawn :: (a, IL ObjOutput)
→ (Event (IL Object → IL Object))

killOrSpawn (, oos) =
foldl (mergeBy (◦)) noEvent es
where

es :: [Event (IL Object → IL Object)]
es = [mergeBy (◦)

(ooKillReq oo
‘tag ‘ (deleteIL k))

(fmap (foldl (◦) id
◦map insertIL)
(ooSpawnReq oo))
| (k , oo)← assocsIL oos]

A kill event is turned into a function that removes the object that requested to be

deleted by partially applying deleteIL to the key of the object to be removed. A

spawn event is turned into a function that inserts all objects in the spawn request

into the collection using insertIL . These individual functions are then simply

175

composed into a single collection update function. We have found this approach

to collection updating to be quite useful and applicable in a wide range of con-

texts [56].

Closing the Feedback Loop

We can now take one more step toward the finished game by closing the feedback

loop. We also add features for game initialization and score keeping. The function

game plays one round of the game. It generates a terminating event carrying the

current (and possibly final) score either when the last alien craft in the current

wave of attack is destroyed, or when the game is over due to an alien touch down:

game :: RandomGen g ⇒
g → Int → Velocity → Score →
SF GameInput ((Int , [ObsObjState]),

Event (Either Score Score))
game g nAliens vydAlien score0 = proc gi → do

rec
oos ← gameCore objs0−≺ (gi , oos)

score ← accumHold score0
−≺ aliensDied oos

gameOver ← edge−≺ alienLanded oos
newRound ← edge−≺ noAliensLeft oos
returnA−≺ ((score,

map ooObsObjState
(elemsIL oos)),

(newRound ‘tag ‘ (Left score))
‘lMerge‘ (gameOver

‘tag ‘ (Right score)))
where

objs0 =
listToIL

(gun (Point2 0 50)
: mkAliens g (xMin + d) 900 nAliens)

The central aspect of this function is the closing of the feedback loop using the

recursive arrow syntax. The arguments to game are a random number generator

(used to seed the signal functions representing the alien crafts), the number of

176

alien crafts in this wave of attack, the desired landing speed of the aliens, and

an initial score carried over from any preceding rounds. Score is kept by simply

counting kill requests from aliens in the object output, and events signaling a new

round and game over is obtained by applying edge detectors to predicates over

the object output looking for the absence of alien crafts and the landing of an alien

craft, respectively.

An unsatisfying aspect of the current design of the Yampa switching combina-

tors is that the exact choice of combinator in gameCore (here dpSwitch) is critical

to the design of game. This point is discussed further in section 11.3.3.

Playing Multiple Rounds

Finally, a multi-round game can be built on top of game. After each successful

defeat of a wave of invaders, game is reinvoked with more and faster alien crafts,

passing on the current score. Once an alien has landed, the game starts over from

the beginning.

multiRoundGame :: RandomGen g ⇒
g → SF GameInput (Int , [ObsObjState])

multiRoundGame g = rgAux g nAliens0 vydAlien0 0
where

nAliens0 = 2
vydAlien0 = −10

rgAux g nAliens vydAlien score =
switch (game g ′ nAliens vydAlien score)

$ λstatus →
case status of

Left score ′ →
rgAux g ′′

(nAliens + 1)
(vydAlien − 10)
score ′

Right finalScore →
rgAux g ′′ nAliens0 vydAlien0 0

where

177

(g ′, g ′′) = split g

All that then remains is to connect the top-level signal function to the outside

world. This involves feeding in a signal of mouse positions and button presses,

and mapping the output signal pointwise to a suitable graphic representation.

Which Switch?

Yampa provides a family of parallel switching combinators. Two members are

pSwitch and dpSwitch that have exactly the same type signature, and as mentioned

in section 11.3.3, which one is chosen can have a significant impact on the design

of a program.

The difference between pSwitch and dpSwitch is that the output from the switcher

at the point of a switching event in the former case is determined by the signal func-

tion being switched into, which in turn usually means from the outputs of the

signal functions in a new, updated collection, whereas the output is the latter case

is given by the output from the signal functions in the old collection. This allows

dpSwitch to be non-strict in the switching event; i.e., the output from dpSwitch at

any point in time can be determined without demanding the switching event at

that same point in time. The “d” in the name of dpSwitch stands for “delayed”,

meaning that the effect of a switch cannot be observed immediately. All Yampa

switchers have delayed versions, and all those are non-strict in the switching

event.

Employing a switcher that is non-strict in the switching event may be enough

to make it possible to close a feedback loop without any unit delay on the feedback

path. In our case the lazy demand structure is such that this indeed is the case,

and hence there is no unit delay (iPre) on the feedback path in game in section

11.3.3.

178

Using dpSwitch also means that the requests for removal from the objects are

going to be visible outside the switcher. This was exploited for the score keeping

mechanism. Had pSwitch been used, we would only be able to observe the out-

put from the objects remaining after a switch. This does of course not include the

output from objects that just removed themselves by emitting kill requests, and

these requests are exactly what is counted for keeping score. A more robust alter-

native would be to associate extra state information with the collection type (like

the counter used for naming in the identity list IL of section 11.3.3) and use that

to keep score.

11.4 Evaluation

Fruit provides a formal model of user interfaces, and demonstrates that this model

can be used as the basis for a GUI toolkit. But is there any practical benefit to

functional modeling? After all, an experienced GUI programmer could imple-

ment the media player example in a few minutes using their favorite imperative

language and GUI toolkit. At first glance, the specification in figure 11.3 (or its

corresponding textual syntax) may even seem somewhat more complicated than a

corresponding imperative program, since it involves both an explicit hold opera-

tor to introduce local state and a feedback loop.

To see why Fruit specifications are useful, consider how the media controller

might be implemented in a modern, object-oriented imperative toolkit, such as

Java/Swing. A good object-oriented design would encapsulate the current state of

the media controller into a model class that supports registration of listener classes

to be notified when the model’s state is updated. At initialization time, the imple-

mentation would create the model and the button instances, register listeners on

179

playButton

public void propertyChanged() {

 playButton.setEnabled(model.getState()!=Playing);

}

model

PropertyChangeListener

ActionListener

model

public void actionPerformed(...) {

 model.setState(model.Playing);

}
JButton

text

listeners

enabled
"Play"
true

...
...

...

Model

state
listeners

Stopped

...

...

...

Figure 11.7: Runtime Heap in Java/Swing Implementation

the model instance that update the enabled property of the buttons, and register

listeners on each button instance that update the state of the model, as illustrated

in figure 11.7. As this diagram illustrates, a feedback loop exists at runtime in this

object-oriented imperative implementation, just as it does in the Fruit specifica-

tion. In fact, a more accurate diagram would repeat this cyclic graph structure

once for each of the other two buttons, with each sub-graph sharing the same

model instance – a considerably more complex structure than figure 11.3.

The key difference between figures 11.3 and 11.7 is that the former is a diagram

of a static specification, while the latter is a visualization of a partial snapshot of

the heap at runtime. In the Swing implementation, the feedback loops are hidden

from the programmer in the listener lists in the implementation of the model and

button classes. Even with whole program analysis, there is no reliable, system-

atic way for either the programmer or a programming environment to recover

figure 11.7 directly from the source code of the Java/Swing implementation. In

contrast, figure 11.3 is isomorphic to the (static) text of the specification. In short,

a Fruit specification differs from an imperative implementation by making data

flow dependencies explicit in the specification.

So why is it useful to specify data flow dependencies explicitly?

First, explicit dependencies encourage programmers to think in terms of time-

180

invariant relationships between different components of the application. The con-

siderable literature on constraints has made the case quite well that this is a higher-

level view of user interfaces. Instead of writing event handlers that update mu-

table objects in response to individual events, the Fruit model encourages writing

declarative equations that specify the relationships between components of the in-

terface that must hold at every point in time.

The data flow style also eliminates a small but important class of program-

ming errors. In traditional imperative event handlers, every event handler must

include code to update all of the appropriate objects in response to the event. A

common source of subtle bugs in imperative GUI programs is forgetting to update

some particular object in response to a particular event, or (even worse) updating

the local state of an object, but forgetting to notify registered listeners. In contrast,

point-wise dependencies in Fruit are propagated automatically by the implemen-

tation.

Making data flow dependencies explicit also enables precise specification of

design patterns related to data flow. For example, the classic Model / View / Con-

troller (MVC) design pattern [42] enables multiple interactive views of the same

underlying data set, and has become the cornerstone of modern object oriented

GUI toolkits. The essence of MVC is decoupling of the time-varying application

state (the model) from the graphical interface, so that the model may be observed

and updated by multiple user interface objects. This decoupling can be expressed

in Fruit by simply decoupling the state accumulation primitive (hold , in the media

controller example) from the rest of the GUI. Multiple views and controllers may

then be wired to share the same model, and this sharing will be manifest in the

specification itself.

Finally, using data flow dependencies as the exclusive mechanism for commu-

181

nication between components of the application enables simple, precise reasoning

about causal relationships directly from the specification. For example:

• (forward reasoning): “What effect does pressing the ‘Play’ button have on the

program state?” This is easily determined from figure 11.3 by tracing the

path from the play button to the state signal.

• (backwards/dependency reasoning): “What GUI components affect the state?”

This is easily determined by tracing backwards along all signal lines that

enter the hold primitive that forms the state signal.

• (component interactions): “How does the ‘Play’ button affect the ‘Pause’ but-

ton?” This is determined by tracing the directed path from the first com-

ponent to the second. Note that if the second component is not reachable

from the first, then, since a functional specification can have no hidden side

effects, the first component has no effect whatsoever on the second compo-

nent.

In an imperative setting (even an object-oriented one), this kind of reasoning is

simply not tractable. Imperative GUI implementations coordinate their activities

via side effects: One callback writes to a variable or property that is subsequently

read by others. Since any callback may directly or indirectly invoke a method or

function that updates the global mutable state used by some other callback, there

is no practical method for reasoning about or controlling interactions between

different parts of the user interface.

182

11.5 Chapter Summary

This chapter presented three examples of increasingly complexity of interactive

graphical applications developed with Fruit and Yampa: a media controller, a

web browser with interactive history, and a video game. These examples provide

evidence that Fruit is capable of modeling realistic user interfaces. Section 11.4

compared a Fruit-style specification with a traditional imperative implementa-

tion. One benefit of the Fruit approach is that dependencies between components

are made explicit in the static specification. This makes it easy for the program-

mer to see and understand causal relationships between interface components in

the Fruit specification, while such relationships would be difficult or impossible

to derive from a traditional imperative program.

183

Part III

Conclusions and Future Work

184

Chapter 12

Related Work, Conclusions and

Future Work

12.1 Related Work

12.1.1 Data Flow Languages

Data flow models and languages date back to the sixties [64, 41]. Esterel [7], Lustre

[11, 27], Lucid Synchrone [13, 65] and Signal [26] are examples of synchronous

data flow languages oriented towards control of real-time systems.

Yampa is intended to be a robust and expressive implementation of FRP, capa-

ble of describing reactive systems with a highly dynamic structure, such as graph-

ical user interfaces or vision-based robot control systems [62], while retaining the

fundamental advantages of the synchronous programming paradigm. Perfor-

mance guarantees for space and time have so far been a secondary concern, al-

though we have gone to great lengths to ensure that the system runs as smoothly

as possible in practice. This puts Yampa in marked contrast to synchronous lan-

guages, as well as the RT-FRP line of work [79], where central aspects are guaran-

185

teed reactivity, execution in bounded space and time, and efficient implementa-

tion (including compilation to digital circuits [8]), but at the expense of requiring

a fairly rigid system structure. For example, the closest thing there is to a switch-

like construct in Lucid Synchrone is a reset operator [28], which causes a stream

computation to start over.

Yampa shares with hybrid systems languages an inherent notion of continu-

ous time and event-like abstractions for capturing discrete aspects of a system.

However, the underlying numeric machinery of Yampa is currently much more

simplistic than what is typical for hybrid modeling and simulation languages. For

example, accurate location of the time of an event occurrence is often considered

critical and requires complex algorithms in combination with language restric-

tions to be computationally tractable. Similarly, these languages often use sophis-

ticated algorithms for integration with variable step size to ensure rapid compu-

tation as well as accurate results. The Yampa implementation does not currently

do any of this. However, the ability of Yampa to express structurally dynamic sys-

tems, which typical hybrid modeling languages cannot deal with cleanly, makes

it an interesting topic of future research to attempt to address such numerical con-

cerns within Yampa.

Fudgets [10] has been a source of inspiration for the Yampa implementation.

However, the asynchronous nature of Fudgets make it fundamentally different

from Yampa. There is certainly an overlap of possible application domains (such

as graphical user interfaces), but for areas where time and synchrony is inherent

(animation, hybrid systems), we believe that a synchronous language is the obvi-

ous choice.

The continuation-based implementation of Yampa also bears a clear resem-

blance to other work in the area, such as the co-iterative characterization of Lucid

186

Synchrone [12], the operational semantics of RT-FRP [79], and the “residual be-

haviors” implementation of Fran [20].

Jacob et al [40] propose a data flow model for user interfaces, including both

continuous variables and discrete event handlers. However, their model focuses

on modeling “post-WIMP” user interaction, and is cast in an imperative, object-

oriented setting. In contrast, the Fruit model demonstrates that the data flow

model is applicable even in the classical WIMP setting, and and does not depend

on objects or imperative programming. As discussed in section 11.4, we believe

that using data flow as the sole basis for our specifications makes reasoning about

specifications much more tractable.

12.1.2 Imperative GUI Toolkits

Java / Swing

Java’s Swing User Interface Toolkit [72] represents the current industrial state-of-

the-art for a GUI Toolkit. Swing is a GUI toolkit library implemented entirely in

Java, depending only on the Java2D rendering engine for 2D graphics. Swing is

a heavily object-oriented design, in that it makes extensive use of inheritance to

capture relationships between similar GUI component types, follows a number of

design patterns [24] (such as Model-View-Controller [42]), and is built around the

Java Beans component model [18].

Component Models and Java Beans

In the Java community, recent work has produced the Java Beans component

model [18]. The Java Beans component model prescribes a set of programming

conventions for writing re-usable software components. A programmer writes a

187

Java Beans component by defining a Java class that specifies a set of events (“inter-

esting” conditions which result in notifying other objects of their occurrence) and

properties (named mutable attributes of the component that may be read or written

with appropriate methods). A visual builder tool uses Java’s introspection facil-

ities [71] to discover the events and properties exported by the component class.

Many of the classes in the standard Java class libraries (such as those of AWT and

Swing) are defined as Java Beans components.

Interactors and Garnet

Interactors [50] are a set of objects responsible for handling input in the Garnet

toolkit. Myers observed that most toolkits communicate using a stream of low-

level device-dependent input events, and identified a set of six high-level param-

eterized interactor classes that cover the input requirements of most GUI-based

applications. For example, different parameters enable the Move-Grow interactor

to serve as the input controller for a scroll-bar elevator, or to allow dragging of

objects in an interactive drawing program.

12.1.3 Functional GUI Toolkits

eXene

Gansner and Reppy developed eXene [25], an X Window System Toolkit for ML.

The eXene library is based on Reppy’s Concurrent ML (CML), which adds con-

currency primitives to ML, and first-class event channels to ML. The event model

in CML is quite similar to the event algebra of FRP, but eXene relies on ML’s im-

perative programming features to handle state, whereas Fruit models mutable

state explicitly using Yampa’s facilities for feedback and state accumulating sig-

188

nal functions.

Fudgets

Fudgets [10] is a functional GUI toolkit for Haskell based on stream processors.

Fudgets extends the stream-based I/O system of older versions of Haskell with

request and response types for the X Window System. The programming model

of Fudgets is very similar to that of Yampa, although Fudgets is based on discrete,

asynchronous streams, whereas FRP is based on continuous, synchronous signals.

FranTk

FranTk [68] uses the Fran reactive programming model (and its combinators) to

specify the connections between user interface components. However, FranTk

uses an imperative model for creating widgets, maintaining program state (with

mutable variables or “MVars”), and wiring of cyclic connections (which occur in

most GUIs).

12.1.4 Constraints

There has been a great deal of work in the CHI community in the area of con-

straints for graphical user interfaces. In general, constraints allow the declara-

tive specification of relationships that should be maintained in the user interface.

Constraints have been successfully used for flexible visual layout [37], maintain-

ing connections between data objects and views of those objects [33], controlling

animation [9] and as the basis for composing interactors [50].

The use of constraints for user interfaces was pioneered in Sketchpad [73], and

used in the Garnet [49], Amulet [53] and SubArctic [38] toolkits. However, these

189

toolkits used constraints to augment an essentially imperative, object-oriented

programming model. Our work differs from this previous work in the use of

point-wise functions (i.e. one-way constraints) as the basis of a formal model that

does not include objects or imperative state.

12.1.5 Formal Models of GUIs

There have been numerous previous proposals for formal models of graphical

user interfaces, such as User Action Notation (UAN) [31] or Paterno’s Concur-

TaskTrees [59]. The emphasis in most of these formalisms is typically on model-

ing user tasks [60], i.e. a logical description of actions to be performed by the user

to achieve certain goals. Such task models fit somewhere between requirements

specification and design in the classical software engineering process. In contrast,

the Fruit model is focused solely on user interface implementations. Task models

are typically very high level, focused on the (human) user, and are not directly

executable. In contrast, Fruit specifications are comparatively low level, make no

direct mention of the user, and are directly executable.

Another formalism for modeling user interface implementations is Palanque’s

Petri net based Interactive Cooperative Objects (ICO) [58]. Like Fruit, ICO en-

ables the programmer to give a precise specification of the run-time behavior of a

graphical user interface. The core model of ICOs is Petri Nets, a simple formalism

with well-understood semantics. ICOs allow Petri net models to be organized into

object-oriented interfaces, in which an object’s reaction to method invocations is

specified by the Petri net. One key difference between Fruit and ICOs is that where

ICOs use objects to organize core models into higher level abstractions, Fruit uses

a (functional) host language to provide abstraction capabilities and general com-

putation. An important consequence of embedding in a functional language is

190

that Fruit models retain reasoning power and semantic clarity while still being

directly executable.

12.2 Conclusions

The benefit of functional programming is that its underlying formal basis enables

simple, precise reasoning about programs using equational reasoning. However,

most modern functional languages in widespread use make some provision for

imperative programming, either directly via imperative features (such as ML’s

mutable references) or in a more restricted way (such as Haskell’s IO monad).

The provision of imperative programming constructs in functional languages has

made it very easy to provide functional languages with access to the operating

system and I/O facilities, which are usually assumed to be somehow inherently

imperative. With only one notable exception beyond the work presented in this

thesis1, all toolkits for programming graphical user interfaces that we are aware

of, even those for functional programming languages, present the programmer

with an imperative programming interface.

This dissertation has presented three libraries: Yampa – for programming re-

active systems in a synchronous dataflow style, Haven – for creating 2D vector

graphics images, and Fruit – for specifying interactive graphical user interfaces

using Haven and Yampa. The unifying theme of these libraries is pure functional

programming: they allow the programmer to specify systems using only the func-

tional core of Haskell, and make no appeal to the I/O monad or other imperative

programming constructs.

One contribution of this thesis is simply to demonstrate that the functional

1Carlsson and Hallgren’s Fudgets system [10]

191

reactive programming model can be used to write declarative executable specifi-

cations of graphical user interfaces. The examples presented in chapters 10 and 11

provide concrete evidence that we have achieved this goal. However, consider-

able revision of the original functional reactive programming model and imple-

mentations were necessary to achieve this goal. To address the limits of expres-

sive power and scalability of Fran and FRP described in chapter 3, we had to

create Yampa, an adaptation of the functional reactive programming model to the

Arrows computational framework, as described in chapters 2 and 4. Chapter 5

presented the concrete implementation of the operational semantics of chapter 4,

as well as some basic dynamic optimizations. To account for certain dynamic user

interfaces, we extended Yampa with features for parallel switching and dynamic

collections, as described in chapter 8.

A secondary contribution of this thesis is to show that our purely functional

model allows us to give a precise account of common GUI programming idioms

and enables simple practical reasoning about GUI programs. Chapter 7 included

an account of applying spatial transforms to a GUI, for both layout and zooming.

Chapter 10 showed how variations on the Model / View / Controller design pat-

tern could be specified in just few lines of Yampa code. Chapter 9 described how

the operational semantics of chapter 4 could be used to prove properties of Yampa

programs using equational reasoning and induction, and chapter 11 explored how

the explicit data flow dependencies enable important causal relationships in a user

interface to be derived from the data flow graph by inspection.

192

12.3 Future Work

This section describes ideas for future work that can build on what has been pre-

sented in this thesis.

12.3.1 Incremental Implementation

Large graphical user interfaces may involve tens or hundreds of GUI components

(buttons, sliders, etc.), all of which are executing in parallel. In the Fruit GUI

model, each such component produces an output signal consisting of the compo-

nent’s visual appearance and auxiliary semantic output. As described in chap-

ter 5, Yampa is implemented by discrete sampling. At any given sample time,

most of the signals in a large GUI program will have the same value for the cur-

rent time step as they had in the previous time step, since the user typically only

interacts with one GUI component at a time. Unfortunately, however, the current

implementations of FRP and Yampa use a “pull” based implementation model,

which results in sampling every signal function in the Yampa program at every

sample time. This results in several significant sources of inefficiency, includ-

ing the computational overhead of redundant sampling, and the memory/video

bandwidth required to redraw the complete screen image on every time step.

An alternative approach would be to use a “push” model for propagation of

signal values, based on the idea of change propagation. Instead of lazily “pulling”

sample values from the output of the data flow graph, the implementation would

“push” information about how a signal has changed since the last sample through

the data flow graph, starting at the inputs.

We invested considerable time attempting to develop such an implementation

within the Haskell embedding of Yampa. This turned out to require a small but

193

rather significant modification of the Yampa programming model of chapter 5.

The difficulty arose with the implementation of loop, since there is no way to

“push” information through the feedback path of a loop without first “pulling”

to know the previous value of the fed-back signal. A solution to this problem

was to abandon the general purpose loop combinator, and instead require the pro-

grammer to explicitly use a loopIntegral or loopDelay combinator that provided

sufficient information about how to break such causality loops. Unfortunately,

this meant that the Arrows syntactic could no longer be used to specify feedback

loops, and it was not entirely clear what the consequences would be of nesting

loop constructs.

It would be extremely interesting to explore direct compilation of the Mini-

Yampa language presented in chapter 4, as it may be possible to achieve an incre-

mental implementation of Yampa if one were not operating within the constraints

of embedding Yampa in Haskell. If such a project were successful, an interesting

next step would be to explore whether, by means of sophisticated preprocessing,

one might return to using all of Haskell as a base language, instead of just a simple

non-strict λ-calculus.

12.3.2 Integration with Standard Widget Sets

The Fruit toolkit presented in chapter 7 is implemented using only the Yampa

and Haven libraries and the pure functional core of Haskell. Restricting ourselves

to these purely functional models is what enables precise reasoning about im-

plementation artifacts, since every GUI component is assured of having a clear

denotation in terms of the Yampa model.

While this direct approach to the implementation of Fruit enables formal rea-

soning, it has significant drawbacks as a practical implementation technique. First,

194

implementing individual GUI components such as buttons, sliders, etc. requires

considerable effort, which is why Fruit only implements a tiny fraction of the com-

ponents found in other modern GUI toolkits. Second, it is simply not possible for

such a direct implementation of GUI components to completely and accurately

implement the native platform look and feel, even for a single platform. There are

two reasons for this. First, platform look and feel is only documented partially

and informally in “style guides”. Because such specifications are highly informal

and usually written more for application developers than toolkit implementors,

it seems unlikely that a style could guide could ever provide sufficient detail to

accurately specify all relevant details of component behavior. Second, the set of

components on a platform and the interaction styles they support are necessar-

ily a moving target. New components and interaction styles are constantly being

invented and added to modern window system toolkits, often without adding

relevant detail to the corresponding style guide. These limitations prevent Fruit

from being a production toolkit suitable for practical application development.

For Fruit to be useful as a production toolkit, it would be necessary to find

a way to implement Fruit’s GUI components using an existing (imperative) GUI

toolkit. This would not necessarily mean abandoning Fruit’s purely functional

model or programming interface. For example, it should be possible to defer

invoking the imperative GUI toolkit routines to the level of reactimate. Com-

munication between GUI components and layout combinators would involve re-

quest/response style interaction using Yampa’s Events, very much akin to the ap-

proach of Fudgets. The most challenging aspect of this approach will be in main-

taining an accurate mapping between the Yampa data flow graph and the (imper-

ative) widget hierarchy, particularly in the presence of Yampa’s flexible switching

constructs.

195

12.3.3 Modeling Systems Software

Most real GUI-based applications need to interact with the outside world in some

way, by (for example) reading or writing files to the filesystem, making network

connections, etc. These other aspects of the operating system do not have purely

functional programming interfaces. A purely functional model of these external

systems seems implausible because of issues such as non-determinism and ex-

otic operational properties (like UNIX filesystem semantics). How should an FRP

program interact with such services? Can we define some reasonable interface to

such services that is consistent with the FRP programming model?

12.3.4 Model-Based Interface Design

Many tools have been proposed to assist in deriving executable user interface im-

plementations from high-level task model specifications [74]. Unfortunately, in

most cases the precise semantics of such tools and the code that they generate is

an implicit property of the tool’s implementation. In contrast, Fruit has a clear,

implementation-independent semantics, but operates at a relatively low level of

abstraction: graphics and input devices. It would be very interesting to use Yampa

as a foundation for writing high-level task models, and to develop a tool that can

systematically map such a high-level model into a lower-level executable Fruit

specification.

196

Bibliography

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

[2] Adobe Systems. Adobe Illustrator. Classroom in a book. Adobe Press, Mountain View,

CA, USA, 1996.

[3] Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley, Read-

ing, MA, USA, third edition, 1999.

[4] Adobe Systems Incorporated. PDF reference: Adobe portable document format, version

1.4. Addison-Wesley, Reading, MA, USA, third edition, 2001.

[5] Apple Computer, Inc. Beyond quickdraw: Quartz. Apple Developer Connection, June

2001.

[6] Ben Bederson, Jon Meyer, and Lance Good. Jazz: An extensible zoomable user in-

terface graphics toolkit in java. In Proceedings of the ACM SIGGRAPH Symposium on

User Interface Software and Technology (UIST), pages 171–180. ACM, 2000.

[7] G. Berry and G. Gonthier. The Esterel synchronous programming language: design,

semantics, implementation. Science of Computer Programming, 19(2):217–248, 1992.

[8] Gérard Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte,

editors, Language and Interaction: Essays in Honour of Robin Milner, Foundations of

Computing Series. MIT Press, 2000.

197

[9] Alan Borning and Robert Duisberg. Constraint-based tools for building user inter-

faces. ACM Transactions on Graphics, 5(4):345–374, 1986.

[10] Magnus Carlsson and Thomas Hallgren. Fudgets - Purely Functional Processes with ap-

plications to Graphical User Interfaces. PhD thesis, Chalmers University of Technology,

March 1998.

[11] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE : A declarative language

for programming synchronous systems. In Proceedings of the 14th ACM Symposium on

Principles of Programming Languages, New York, NY, 1987. ACM.

[12] Paul Caspi and Marc Pouzet. A co-iterative characterization of synchronous stream

functions. In Coalgebraic Methods in Computer Science (CMCS’98), Electronic Notes in

Theoretical Computer Science, March 1998.

[13] Paul Caspi and Marc Pouzet. Lucid Synchrone, a functional extension of Lustre.

Submitted for publication, 2000.

[14] Antony Courtney. Engineering insights from an interactive imaging application. The

X Resource: A Practical Journal of the X Window System, Fall 1991.

[15] R. L. Crole and A. D. Gordon. A sound metalogical semantics for input/output

effects. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer science logic: 8th

workshop, CSL ’94, volume 933, pages 339–353, Berlin, Heidelberg, and New York,

1995. Springer-Verlag.

[16] Alan Dix and Colin Runciman. Abstract models of interactive systems. In Proceedings

of the HCI’85 Conference on People and Computers: Designing the Interface, The Design

Process: Models and Notation for Interaction, pages 13–22, 1985.

[17] D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer Graphics Forum,

12(3):C25–C36, 1993.

198

[18] Graham Hamilton (editor). Java Beans API Specification 1.01. Sun Microsystems, 1997.

[19] Tim Bray (editor). Extensible Markup Language (XML) 1.0 (Second Edition). World Wide

Web Consortium (W3C), October 2000.

[20] Conal Elliott. Functional implementations of continuous modelled animation. In

Proceedings of PLILP/ALP ’98. Springer-Verlag, 1998.

[21] Conal Elliott. An embedded modeling language approach to interactive 3D and

multimedia animation. IEEE Transactions on Software Engineering, 25(3):291–308,

May/June 1999. Special Section: Domain-Specific Languages (DSL).

[22] Conal Elliott. Functional images. In Jeremy Gibbons and Oege de Moor, editors, The

Fun of Programming. Palgrave, 2003.

[23] Conal Elliott and Paul Hudak. Functional reactive animation. In International Confer-

ence on Functional Programming, pages 163–173, June 1997.

[24] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[25] Emden R. Gansner and John H. Reppy. A multi-threaded higher-order user interface

toolkit. In User Interface Software, Bass and Dewan (Eds.), volume 1, pages 61–80. John

Wiley & Sons, 1993.

[26] T. Gautier, P. le Guernic, and L. Besnard. SIGNAL: A declarative language for syn-

chronous programming of real-time systems. In G. Kahn, editor, Functional Program-

ming Languages and Computer Architecture, pages 257–277. Springer-Verlag, Berlin,

DE, 1987. Lecture Notes in Computer Science 274; Proceedings of Conference held

at Portland, OR.

[27] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow

programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.

199

[28] Grégoire Hamon and Marc Pouzet. Modular resetting of synchronous data-flow

programs. In Principles and Practice of Declarative Programming (PPDP’00), Montreal,

Canada, September 2000.

[29] Vincent J. Hardy. Java 2D API Graphics. P T R Prentice-Hall, Englewood Cliffs, NJ

07632, USA, 1999.

[30] David Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, 8(3):231–274, June 1987.

[31] H. Rex Hartson and Philip D. Gray. Temporal aspects of tasks in the user action

notation. Human-Computer Interaction, 7(1):1–45, 1992.

[32] Matthew C. B. Hennessy and Gordon D. Plotkin. Full abstraction for a simple parallel

programming language. In Mathematical Foundations of Computer Science, pages 108–

120, 1979.

[33] Ralph D. Hill. The abstraction-link-view paradigm: Using constraints to connect

user interfaces to applications. In Proceedings of CHI’92, pages 335–342, 1992.

[34] Paul Hudak. Modular domain specific languages and tools. In Proceedings of Fifth In-

ternational Conference on Software Reuse, pages 134–142. IEEE Computer Society, June

1998.

[35] Paul Hudak. The Haskell School of Expression – Learning Functional Programming

through Multimedia. Cambridge University Press, Cambridge, UK, 2000.

[36] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots,

and functional reactive programming. In Summer School on Advanced Functional Pro-

gramming 2002, Oxford University, volume 2638 of Lecture Notes in Computer Science,

pages 159–187. Springer-Verlag, 2003.

200

[37] Scott E. Hudson and Shamim P. Mohamed. Interactive specification of flexible user

interface displays. Information Systems, 8(3):269–288, 1990.

[38] Scott E. Hudson and Ian E. Smith. Ultra-lightweight constraints. In ACM Symposium

on User Interface Software and Technology, pages 147–155, 1996.

[39] John Hughes. Generalising monads to arrows. Science of Computer Programming,

(37):67–111, 2000.

[40] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. A software model

and specification language for non-WIMP user interfaces. ACM Transactions on

Computer-Human Interaction, 6(1):1–46, 1999.

[41] R. M. Karp and R. E. Miller. Properties of a model for parallel computations: Deter-

minacy, termination, queuing. SIAM J. Applied Math. 14, (6):1390–1411, November

1966.

[42] G. Krasner and S. Pope. A description of the model-view-controller user interface

paradigm in the smalltalk-80 system, 1988.

[43] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, May 1994.

[44] Peter J. Landin. A generalization of jumps and labels. Higher-Order and Symbolic

Computation, 11(2), 1998.

[45] Macromedia Corporation. Macromedia Flash MX Product Information, 2002.

[46] M. Morris Mano. Digital Design. Prentice Hall, 2001.

[47] Microsoft Corporation. Microsoft Foundation Classes (MFC) Documentation, 1997.

[48] Brad Myers. Separating application code from toolkits: Eliminating the spaghetti of

call-backs. In Proceedings of the Fourth Annual ACM SIGGRAPH Symposium on User

Interface Software and Technology (UIST), November 1991.

201

[49] Brad A. Myers. Garnet: Comprehensive support for graphical, highly-interactive

user interfaces. IEEE Computer, 23(11):71–85, 1990.

[50] Brad A. Myers. A new model for handling input. ACM Transactions on Information

Systems, 8(3):289–320, 1990.

[51] Brad A. Myers, editor. Languages for Developing User Interfaces. Jones and Bartlett

Publishers, 1992.

[52] Brad A. Myers. Why are human-computer interfaces difficult to design and imple-

ment? Technical Report CMU-CS-93-183, Computer Science Department, Carnegie-

Mellon University, July 1993.

[53] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew

Faulring, Bruce D. Kyle, Andrew Mickish, Alex Klimovitski, and Patrick Doane. The

amulet environment: New models for effective user interface software development.

Software Engineering, 23(6):347–365, 1997.

[54] Netscape Communications Corporation. XUL Programmer’s Reference Manual.

Mozilla Project, 2002. http://www.mozilla.org/xpfe/xulref/.

[55] Henrik Nilsson. Functional automatic differentiation with dirac impulses. In Proceed-

ings of the Eighth ACM SIGPLAN International Conference on Functional Programming,

pages 153–164, Uppsala, Sweden, August 2003. ACM Press.

[56] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive pro-

gramming, continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop

(Haskell’02), pages 51–64, Pittsburgh, Pennsylvania, USA, October 2002. ACM Press.

[57] David Padua. The fortran I compiler. Computing in Science and Engineering, 2:70–75.

202

[58] Phillipe Palanque and Rémi Bastide. Interactive Cooperative Objects : an Object-

Oriented Formalism Based on Petri Nets for User Interface Design. In IEEE / System

Man and Cybernetics 93, pages 274–285. Elsevier Science Publisher, October 1993.

[59] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications. Applied

Computing. Springer-Verlag, 1999.

[60] Fabio Paterno. Task models in interactive software systems. In S. K. Chang, editor,

Handbook of Software Engineering & Knowledge Engineering. World Scientific Publishing

Co., 2001.

[61] Ross Paterson. A new notation for arrows. In Proceedings of the ACM SIGPLAN

International Conference on Functional Programming (ICFP 2001), September 2001.

[62] Izzet Pembeci, Henrik Nilsson, and Greogory Hager. Functional reactive robotics:

An exercise in principled integration of domain-specific languages. In Principles and

Practice of Declarative Programming (PPDP’02), October 2002.

[63] Ken Perlin and David Fox. Pad: An alternative approach to the computer interface.

Computer Graphics, 27(Annual Conference Series):57–72, 1993.

[64] Carl Adam Petri. Kommunikation mit Automaten. Bonn: Institut f¨ur Instrumentelle

Mathematik, Schriften des IIM Nr. 2, 1962.

[65] Marc Pouzet, Paul Caspi, Pascal Couq, and Grégoire Hamon. Lucid Synchrone v2.0

– tutorial and reference manual. http://www-spi.lip6.fr/lucid-synchrone/

lucid_synchrone_2.0_manual.ps, April 2001.

[66] John Reynolds. Theories of Programming Languages. Cambridge University Press,

1998.

[67] John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation,

6(3–4):233–247, 1993.

203

[68] Meurig Sage. FranTk: A declarative GUI system for haskell. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming (ICFP 2000), September

2000.

[69] Ben Shneiderman. Direct manipulation: A step beyond programming languages.

IEEE Computer, 16(8):57–69, 1983.

[70] Alvy Ray Smith. Image compositing fundamentals. Technical Report Technical

Memo #4, Microsoft Research, July 1995.

[71] Sun Microsystems. Java Core Reflection API and Specification. Sun Microsystems, 1997.

[72] Sun Microsystems. The Swing Java Connection. Sun Microsystems, 1997.

[73] Ivan E. Sutherland. Sketchpad a man-machine graphical communication system. In

on Twenty-five years of electronic design automation, pages 507–524. ACM Press, 1988.

[74] Pedro A. Szekely, Piyawadee Noi Sukaviriya, Pablo Castells, Jeyakumar Muthuku-

marasamy, and Ewald Salcher. Declarative interface models for user interface con-

struction tools: the MASTERMIND approach. In EHCI, pages 120–150, 1995.

[75] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-Wesley, Reading,

MA, 1998.

[76] Philip Wadler. How to declare an imperative. ACM Computing Surveys, 29(3):240–

263, 1997.

[77] Zhanyong Wan. Re: more on frp. Electronic Mail Message to Functional Re-

active Programming Mailing List (frp@cs.yale.edu). http://http://netra.cs.

yale.edu/mailman/listinfo/frp.

[78] Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-

ciples. In Proc. ACM SIGPLAN’00 Conference on Programming Language Design and

Implementation (PLDI’00), 2000.

204

[79] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In International Con-

ference on Functional Programming, 2001.

205

