Modeling User Interfaces in a
Functional Language

Antony Courtney

Advisor: Paul Hudak

Commiuttee: John Peterson
Zhong Shao
Conal Elliott

Acknowledgement: Henrik Nilsson

Thesis
]

Thesis:

Functional Reactive Programming (FRP)
provides a suitable basis for writing
rigorous executable specifications of
Graphical User Interfaces.

Page: 2

Overview

®» Background / Motivation

= Foundations:

= Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

= Small Example

= Extensions
= Continuations and Dynamic Collections

= Larger Examples
= Conclusions

Page: 3

Background / Motivation (l)

= GUI Programming is difficult!
[Myers 1993] gives some reasons:
= Graphics, usability testing, concurrency, ...

= GUI builders only help with the superficial challenges
(visual layout)
= still have to write code for interactive behavior
= programming model is still “spaghetti” of callbacks [Myers 1991]

= Historically: Many programming problems became much
easier once the theoretical foundations were understood.
= parsing before BNF [Padua 2001], relational DB model [Codd 1970], ...

= We need:
A rigorous formal basis for GUI programming.

Page: 4

Related Work (1): Formal Models

Lots of formal approaches to UI specification:

= Task Models / ConcurTaskTrees (Paterno)
= Petri Nets / Interactive Cooperative Objects (Palanque)
= Model-based IDEs: HUMANOID / MASTERMIND (Szekely)

= Emphasis: Ul analysis, design, evaluation
= My primary interest: Ul implementation.

= Not full programming languages:
= Specifications not directly executable.
= What doesnt get modeled? (input devices? graphics? layout?)
= Model-based IDEs: Semantics of generated programs?

[Szekeley 95]: "a lot of the semantics of the model is implicit in
the way the tools make use of the attributes being
modeled.”

Page: 5

Related Work (Il) : FP
S

= Historically: strong connection between functional programming and
formal modeling.

= But: functional languages were once considered "weak" for expressing
I/O and user interaction.

= The "solution": monads / monadic IO [Wadler 1989]

putStrLn 22 String — 10 ()
getStrLn - 10 String

weread: f:I0a
as: “fperforms some IO action and then returns an a.”

= type distinction between pure computations and imperative actions.
= very useful technique for structuring functional programs.

Page: 6

Background: FP and Monads

Q: But what is the denotation of type (10 a) ?
Answer:

1710 a]] = World — (World, a)

Q: What are the formal properties of "World"?!
Answer: ?7?

Monadic 10 tells us where I0 actions occur in our
programs, but does nothing whatsoever to
deepen our understanding of such actions.

Page: 7

Background / Motivation
]

= Our goals:

1. A simple functional model of GUIs that:
= Makes no appeal to imperative programming.
= Uses only formally tractable types.

= EXpressive enough to describe real GUISs:
— model input devices and graphics explicitly.

2. A concrete implementation of this model:

...S0 that our specifications are directly
executable.

Page: 8

Summary of Contributions

. Yampa (Chapters 3-5, [Courtney & Elliott 2001], [Nilsson, Courtney, Peterson
2002]):

= A purely functional model of reactive systems based on
synchronous dataflow.

= Based on adapting Fran [Elliott & Hudak 1997] and FRP [Wan & Hudak
2001] to Arrows Framework [Hughes 2000].

= Simple denotational and operational semantics.
= Haven (Chapter 6):
= A functional model of 2D vector graphics.

= Fruit (Chapters 7, 10, 11, [Courtney & Elliott 2001], [Courtney 2003]):
= A GUI library defined solely using Yampa and Haven.

o Dynamic Collections (Ch. 8, [Nilsson, Courtney, Peterson 2002]).
= Continuation-based and parallel switching primitives

Page: 9

Overview
]

= Background / Motivation

= Foundations:
#» Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

= Small Example

= Extensions
= Continuations and Dynamic Collections

= Larger Examples
= Conclusions

Page: 10

Yampa
- 00000/}

= An implementation of Functional Reactive Programming (FRP) in
Haskell, using Arrows Framework [Hughes 2000].

= Key Concepts:
= Signal: function from continuous time to value:

Signal « = Time — «
= Signal Function: function from Signal to Signal:

SF o 8 = Signal a — Signal B

Visually:

Page: 11

Yampa Programming
]

= Implementation provides:
= a number of primitive SFs
= (arrow) combinators for composing SFs

= Programming consists of:
= composing SFs into a data flow graph.
...much like composing a digital circuit.

= Implementation approximates continuous-time
semantic model with discrete sampling.

Page: 12

Arrow Combinators for SFs
I —
= Lifting (point-wise application):
arr i {(a —b) — SF a b

:b U c
arr f
Tarr fI = Xs At [f]1(s t)

= Serial Composition:
>> 5 be— SFed— SFbd

> > fa > ga >
b b (@ C d d

fa >>>ga

Hfa = ga’]] — [[gCL]] © I]-fCL]] Page: 13

Other Arrow Combinators
e

= Use fuples to group signals:
first . SF a b — SF (a,c) (b, c)

a > Sf b '
c cl
first sf

[first sfl = As.pairZ ([sf]] (fstZ s)) (sndZ s)
= QOther (derived) combinators to form arbitrary digraphs:

sfl > > Sfl

sf] Sf2 > 1 Sf2
second sf sf1 &R&s sf2 Sf1 wk Sf20, 00 14

Feedback

= Can define cyclic graphs with loop:
loop :: SF (a,c) (b,c) — SF a b

oo :

.
loop sf

Tloop fall = As.fstZ(Y (Ar.sf|(pairZ s (sndZ r))))

= Allows an SF to accumulate local state
...just like a digital circuit (flip flop).

= Delay needed on feedback signal to avoid a “black hole”.
...just like a digital circuit.

Page: 15

Discrete Event Sources
]

= A discrete eventis a condition that occurs at
discrete points in time
= pressing of a button
= rising/falling edge of a Boolean signal

= A possible occurrence modeled by type:
data fvent a = FvOce a

| NoLwvent
= Some basic operations (used point-wise):
tag b — Fvent a — Lvent b

mergels . Lvent a — fwent a — Event a

gate .. Lvent a — Bool — Event a
Page: 16

Event Processors
]

hold :: a — SF (Event a) a

hold 3
5+ 5+ &—o
3 o
IT 4 1T o
[—> [—>

accum . a — SF (Fvent (a — a)) (Event a)

accum 1 |

[— [— Page: 17

Example: A Bounded Counter
- 00000/}

bc :: Int -> Int -> SF (Event ()) Int
bc x0 max = ..

= Tnitial value: x0
= Tncrement on each event until max reached

Implementation:

boundedCounter x0 max =
d ™

incRe updE
RGDRCTEE s
) o0

Page: 18

Arrows Syntax [Paterson 2001]

boundedCounter x0 max =

-

incRe updE
G ¥ 22D
) o0

A

' accum
|T %:l

X0 —

lamo1d]
|

B

be :: Int — Int — SE (Event ()) Int
be 0 mar =

proc incleq — do

let updtl = (incReq ‘gate' (z < max)) 'tag’ incr
updlt, —dAccumHold z0 — x

XL

—returnA

Page: 19

Arrows Syntax [Paterson 2001]

boundedCounter x0 max =
' L

incRe updE
\ q .. @ p 1 accum
t %

@ 1 ¥, lamo1d]
L iy
X0—

S H J

be :: Int —\ Int — SE (Event ()) Int
be z0 max \=

proc mc\Req — do

let updtl = (incReq ‘gate' (z < max)) 'tag’ incr
updlt, —dAccumHold z0 — x
x —returnA

Page: 20

Arrows syntax [Paterson 2001]

boundedCounter x0 max =

B

incR dE
u
' 1%

A

1 ¥, laHo1d]
a—| =
X |
\ y

be :: Int — Int — SE (Bvent ()) Int

bc 0 max =

proc incleq — do

let updFE =

(incReq ‘gate' (z < maz)) ‘tag' incr

updlt, —dAccumHold z0 — x
x —returnA

Page: 21

Arrows syntax [Paterson 2001]

boundedCounter x0 max =

&

B

incR dE
u
. =
/

X0 —

laHo1d]
|

L 7

be :: Int — Int — SE (Event ()) Int

bc x0 mar =
proc incleq — do

let updtl = (incReq ‘gate' (x < max)) 'tag’ incr

updF >—dAccu'n§,Hold x0 — x

X —returnA

Page: 22

Arrows Syntax [Paterson 2001]

boundedCounter x0 max =

be :: Int — Int — SE (Event
bc 0 maxr =

proc incleq — do
let updll = (4

-

incRe updE

A

) Int

updl —dAccumHold x0 — x

XL

> returnA

cReq ‘qate' (x < max)) 'tag’ incr

Page: 23

Arrows syntax [Paterson 2001]

boundedCounter x0 max =

&

e 0

X0 —

laHo1d]
|

B

A

be :: Int — Int — SE (Event ()) Int

bc x0 mar =
proc incleq — do

let updFE = (incReq ‘gate' (z. < maz)) ‘tag’ incr

updlt, —dAccumHold ©0 —
T eturn

Page: 24

Concrete Syntax

boundedCounter x0 max =
' L

incR updE
inc eq_‘tili, tiEEé:EEEE> PdE |

S H J

bc :: Int -> Int -> SF (Event ()) Int
bc x0 max = loop (arr gateReq >>>
dAccumHold x0 >>> arr dup)
where gateReq :: (Event (),Int) -> Event (Int -> Int)
gateReq (incReq,n) =
(incReqg 'gate (n < max)) tag incr
dup x = (x,x)

Page: 25

Basic Switching
]

= switch combinator switches from one SF to another on
event occurrence:
switch . SF a (b, Event c)
— (¢ — SF a b)
— SF a b

switch

b > —

Ev c

(9

switch sf0 kf

a sf0

t—)

Page: 26

Basic Switching
]

= switch combinator switches from one SF to another on
event occurrence:
switch . SF a (b, Event c)
— (¢ — SF a b)
— SF a b

switch

b ' /O
a sf0 TV
Ev c

©

t—)

Page: 27

Basic Switching
T

= switch combinator switches from one SF to another on
event occurrence:

switch . SF a (b, Event c)
— (¢ — SF a b)

— S ab
Eswitch E
"""" :-------> "B_""""'"':l"""“"’ /O
a sf0 i TV
Ev c |
: l‘ >

sf'

;

Page: 28

Basic Switching
]

= switch combinator switches from one SF to another on
event occurrence:

switch . SF a (b, Event c)
— (¢ — SF a b)
— SEF a b

= VAN
a sf' b

t—)

Page: 29

A Brief History of Time (in FRP)

Evolution of the FRP semantic model (Chapter 2):
= Fran [Elliott & Hudak 1997]:

Behaviors are time-varying values (“'signals”):
Behavior a = Time -> a

= SOE FRP [Hudak 2000] [Wan & Hudak 2000]:

Behaviors are functions of start time ("computations”):
Behavior a = Time -> Time -> a

Motivation: Avoid inherent space-time leak in:
x =y switch (e -=> z)

Page: 30

Evolution of Yampa
- 00000/}

= Fran’s Behavior semantics:

= highly expressive

= difficult to implement efficiently (space/time leaks)
= SOE FRP’s Behavior semantics:

= Efficient, but basic model limited in expressive power

= Attempt to recover expressive power: runningln
= Captures a running signal as a Behavior

= SOE FRP + runninglin:

= No type level distinction between signals and signa/
computations (Behaviors).
= yery confusing in practice.

= Implementation couldn’t handle recursive definitions.

Page: 32

What Yampa Gives Us

= A clear distinction between

Signals: . ,
gnats Signal « = Time — «

and Signal Functions:

SF o g = Signal a — Signal 3

...and ways to express both.

= Arrows framework:
= Arrow laws for reasoning about programs
= Std. library of combinators for specifying plumbing
= Explicit combinators help avoid time/space leaks.

= Arrows syntactic sugar:

= Concrete syntax for data flow diagrams.

= Alleviates syntactic awkwardness of combinator-based design.
Page: 34

Overview
]

= Background / Motivation

= Foundations:
= Yampa — adaptation of FRP to Arrows framework
#» Fruit — GUI model based on Yampa

= Small Example

= Extensions
= Continuations and Dynamic Collections

= Larger Examples
= Conclusions

Page: 35

Brief Aside: Graphics Model

Haven (Chapter 6):
= Typed, functional interface to 2D vector graphics
type Image = (Point — Color, Region)

= Programming model owes much to Pan [Elliott 2001]

Main Idea:

= Try to provide minimal set of primitives

= Provide higher-level functionality by composing
primitives.

Portable, Functional Interface:

= Implementations: Java2D, FreeType

Page: 36

Compositionality in Haven

= Instead of: fillShape :: Color — Shape — Image

e.g.:
fillShape red (circle 20) = ‘

= Haven provides:
monochrome .. Color — Image

imgCrop .. Shape — Image — Image

monochrome red :.
imgCrop (circle 20) (monochrome red) = ‘

Page: 37

fillShape vs. imgCrop

imgCrop is far more versatile than fil/lShape:
= Use imgCrop on any image:

gradient :: Point — Color — Point — Color — Image

= Compose crop operations:
imgCrop sl ((imgCrop s2 ...) over
(imgCrop s3 (imgCrop ...)))

imgCrop Q - .

Page: 38

Fruit

What is a GUI?

= GUIs are Signal Functions:
type GUI a b = SF (GUIInput, a) (Picture, b)
= Signal types:
GUlIInput — keyboard and mouse state

Picture — visual display (Image)
a,b — auxiliary semantic input and output signals

* GUlInput:

data Mouse = Mouse{ mpos :: Point,
lbDown, rbDown .. Bool

}
type GUIlInput = (Maybe Kbd, Maybe Mouse)

Page: 39

Fruit: Components and Layout
- 00000/}

= Aux. signals connect GUI to rest of application.
= Components (slightly simplified interfaces):
= Text Labels:

label .. GUI String () Date Modified: 2/29/2004
= Buttons:

button :: String — GUI Bool (Fvent ()) pross me!
= Text fields:

textField .. String — GUI (Fvent String)
(Fvent String)

type here... |

= Layout Combinators:

besideGUI .- GUI' bc — GUI d e — GUI (b,d) (c,e)
aboveGUI :: GUI bc— GUI de — GUI (b,d) (c,e)

Page: 40

Overview
]

= Background / Motivation

= Foundations:
= Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

®» Small Example

= Extensions
= Continuations and Dynamic Collections

= Larger Examples
= Conclusions / Future Work

Page: 41

Basic Fruit Example
- 0000

= Classic VCR-style medla controller:
" Fruit Test Winde - O] x|
| o
state: Stopped

= Only enable buttons when action is valid:
= j.e. "pause"” only enabled when media is playing.

= Represent media state with:
data MediaState = Playing | Paused | Stopped

Page: 42

Design

: : dow M [m] JEY
= just a simple FSM: [s |
.f/ﬂ q‘“\‘x nansel ,-fff ﬁ\\
-’fPl.m,fings~ ™ Paused
i'n1"L ,.:')i nlavEk 'llllx)
\ A8 . S 4
“?/,_x<

[

= Derive time-invariant constraints by inspection:
= playE: state /= Playing
= pausekE: state == Playing
= stopkE: state /= Stopped

Page: 43

Fruit Specification (Visual)

= Visually:

playE Ba

dHold
Playing slate

=

pausel

Paused stopE

Play ‘ Pause H ‘ Stop |

Gtate /=Playima (S tate==Playin9 Gtate /=Stoppea
F F 3 A

fr"f-__-\“_ll pausekE - ; M\\II

IF'lﬂ':fIHQ . . Paused II(

N
|Stopped |

Page: 44

Fruit Specification (Textual)
]

playerCtrl .. GUI () MediaState
playerCtrl = hbox (proc _ — do

(state # Playing) —button "Play" — playk
(state = Playing) >—button "Pause" — pausel
(state Z Stopped) =—button "Stop" — stoplk

(mergeks [tag playl’ Playing, tag pauselF Paused,
tag stopkE Stopped])
—boxSF (dHold Stopped) — state

state >—returnA)

Page: 45

Evaluation
]

= The Fruit specification looks rather complicated:
= explicit hold operator to accumulate state
= feedback loop!

We can easily implement the media controller in
our favorite (imperative) language and toolkit.

So we should ask:

How does a Fruit specification compare to
an imperative implementation?

Page: 46

Imperative, 00O Implementation
- 00000/}

= Using Java/Swing and MVC design pattern:
= Implement time-varying state as a mutable field.

= Encapsulate state in a moage/ class that supports
registration of /isteners
= [/steners are notified when state is updated

= Implement a model listener for each button that
updates that button's enabled state.

= Implement action listeners for each button that
update the model's state.

= At program initialization time:
= construct objects, register listeners.
= relinquish control to the toolkit.

Page: 47

Visualising Java/Swing solution

= partial snapshot of heap at runtime:

ActionListener

public void actionPerformed(...} |
JButton model . setState (model.Playing) ; Model

text "Play” } state Stopped
enabled firue listeners
listeners fffﬁffff,f’fﬂ#ﬁ* ____________ rsesee lowmmmmame s
"""""" .| PropertyChangeListener
model[EP’ﬁffﬁ
playButton
“““““ e

playButton.setEnabled{model .getState () '=Playing);
1

Page: 48

Java/Swing Heap - Big Picture

ActionListener JButton

ic void actionPerformed(...) {
model.setState (model. Paused); .
| R S

listeners

e o e e e e e e e e o e o e o o e e o o o /= = £TQPErtyChangeListener
]
IplayButton o

public woid propertyChanged() {
playButton.setEnabled (model.getState ()==Playing):
}

ActionListener

[public void acticnPerformed(...) |
JButton model.setState (model.Playing) Model

[) | ———)

enabled Yrue listeners I }
listeners W9(0...J}{ L bLeao___ PR N

|
hctionListener

PropertyChangelListener

model
playButton

C void propertyChanged() |
playButton.setEnabled (model.getState() !=Playing):
t

1 de1 text\"Stop"
I L Foce _m_ ___________ enabled Yalse
public void actionPerformed(...) f{ listeners

model.setState (medel. Stopped) ;

|

|

1

|

|

|

1

! } &
1 text "Play" state Stopped
|

1

|

|

|

1

|

|

|

ertyChangelListener

ThoaetRl

playButton [o

public woid propertyChanged() {
playButton.setEnabled (model.getState () |=Stopped);
}

Page: 49

Some Observations

From the heap snapshot, we can see:

A feedback loop exists in Swing implementation just as it
did in Fruit specification.

However:

= In Java, dataflow graph created implicitly and dynamically by
mutating objects.
= Error-prone! easy to update a field, but forget to invoke listeners...

= Java diagram is a snapshot of heap at one particular instant at
runtime.

= Can't derive such pictures from the program text.

= [n contrast:

= Fruit diagram Js the specification.
(or at least isomorphic...)

Being able to see complex relationships (feedback) enables
reasoning...
Page: 50

Reasoning with Specifications
]

Some questions we can ask / answer just by
inspection of (visual) specification:
= What effect does pressing "play" have on state?
= What GUI components affect state?

= How does the "play" button affect the "pause”
button?

In Yampa/Fruit these relationships are all
made explicit in the data flow diagram.

= purely functional model = no hidden side effects.

Page: 51

Reasoning: Proofs?
]

Q: If Yampa/Fruit provide a formal model, can we use
them to prove properties of reactive programs?

A: Of course! See Chapter 10:
= runSF _based on scanl, operational semantics.
= TLA's (1 (Malways”) operator [Lamport 1994] for SF's.

= An /nvariance theorem for SFs.
= Serves as a simple coinduction principle.
= Proof: induction on length of input sequence.

= Example proof: bounded counter is always bounded.
= Uses: case analysis over internal state & input, inv. thm.

= But..:

= We gain much reasoning power just by having a
precise type for GUIs.

= Simple data flow analysis by inspection.
Page: 52

Overview
]

= Background / Motivation

= Foundations:
= Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

= Small Example

= Extensions
#» Continuations and Dynamic Collections

= Larger Examples
= Conclusions

Page: 53

Motivation
e

= Give a modular account of dynamic user interfaces in
Fruit/Yampa.
= Example:

& Search Messages |Z| |E| El

Search for messages in: | Inbox on Mail for aacZ8@aaczs.mail yvale,edu

Search subfolders
() Match all of the fFollowing — (5) Match any of the Following

Subject * | | conkains

Sender W

Subject i Locakion @]

Page: 54

Search Pane - First Attempt

Basic Ideas: GUIs as first-class values, switching.
= Represent each row of search pane as a GUI:
oneRow . GUI () MsgAttr e
= Can compose rows into a grid with aboveGUI.:
addRow :: GUI () [MsgAtir] — GUI () [MsgAttr]

addRow curGrid = proc (gin,) — do

(gin, ()) — curGrid ‘above GUI"* oneRow — (pic, (mas, ma))
(pic, ma : mas) =—returnA

nnnnnnn

= On more button, switch recursively into new grid:

mkGrid .. GUI () [MsgAttr] — GUI (Event ()) [MsgAttr]
mkGrid prevGrid = switch aux

(A — mkGrid (addRow prevGrid))

where auxr = ...
Page: 55

Search Pane - First Attempt

& Search Messages

Search For messages in: | Inbox on Mail for aacz&@aaczs, mail yale,edu v

Clear

Search subfolders
() Match all of the following (%) Match any of the Following

Subject w | | conkains W | |[¥ampa

Sender VNN -onkains Ankorey

More | Fewer |

Subject Dake o & Sender Location B}

Page: 56

Search Pane - First Attempt
- 00000/}

& Search Messages

Search for messages int | Inbox on Mail for aac28i@aac?s.mail,yvale,edu v

Search subfaolders
() Match all of the Following () Match any of the Following

Subject % | | conkains "

Subject % | | conkains W

Subject % | | conkains W

More | | Fewer

Subiject Date .. & Sender Location B}

Page: 57

The Problem with Switching

What happened?!
= As they execute, SFs may accumulate internal state.

= But this internal state is discarded on a switch:

swlest ;. SF () Float — SF () Float
swlest sf = switch (sf &R& after 2)
(A_ — swTest sf)

swlest (constant 1 >=>> integral) :

Continuation-Based Switching
]

Solution: A “call/cc” for Signal Functions:

= QOperational Semantics of SFs (Chapters 4,5):
data St a b = SF (DTime — a — (SF a b,b))

= Internal state of running SF in its continuation.

= Expose this SF continuation during switching:

kSwitch 2 SF a b
— SF (a,b) (Event ¢)
— (SF ab— ¢c— SF ab)
— SE ab bage: 59

Fun with kSwitch

kswTestl :: SF () Float — SF () Float
kswTestl sf = kSwitch sf (after 2)
(MNksf — — kswTest] sf)

kswTestl (constant 1 >>> integral) :

ViLs

kswTest? :: SF () Float — SF () Float
kswTlest?2 sf = kSwitch sf (after 2)
(Aksf _ — kswTest2 ksf)

kswTest2 (constant 1 > integral) : V
¢ Page: 60

[—

Dynamic Collections
]

Back to our dynamic search pane GUI:

= “More” button:
= kSwitch is sufficient.

= Compose “current grid” (SF continuation) with GUI
for another row.

= “Fewer” button?
= Problem: Can't “invert” a >>> operation!

= Solution: Allow switching over collections of SFs
running in parallel...

Page: 61

pSwitch(B)
- 00000/}
= Yampa provides pSwitch(B) (parallel switch):
pSwitchB . Functor col =
col (SF a b)
— SF (a, col b) (Fvent c)
— (col (SF ab) — c— SF a (col b))
— SF a (col b)

= reshape function type is key to flexible updates.

Page: 62

pSwitch(B)

= Yampa provides pSwitch(B) (parallel switch):
pSwitchB . Functor col =

col (SF a b)
— SF (a, col b) (Fvent c)

/—> (col (SF — ¢ — SF a (col b))
e

= reshape function type is key to flexible updates.

Page: 63

Overview
]

= Background / Motivation

= Foundations:
= Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

= Small Example

= Extensions
= Continuations and Dynamic Collections

®» Larger Examples
= Conclusions

Page: 64

Web Browser with History

J Fruit Test Window —mlxl| = Fwd , Back buttons

= navigate history
Lol test2.htm| _ _
Test? = Buttons, location field
e _ and clicking links
15 15 another test docoment. Tlis oneis .
even better than the first one. update hIStOI‘y.

e Bt e = Location field, buttons
| updated in response
to navigation events.

Page: 65

Web Browser w/ History
- 00000/}

browser:
I,ll"'_
navPane htmlIPane
Back | [Forward | nrrexh’_,-’rfES 'SEIPHgEES' — - S
Location: | |)
urlSetTextsS —
linkClickEES

Mo,

Page: 66

History List

histList:
let goBack :: HistState -> HistState getUrl :: HistState -> String
goBack (pos,hList) = (pos+l,hList) getUrl (pos,hList) = hList !! pos
goFwd :: HistState -> HistState getPos :: HistState -> Int
goFwd (pos,hList) = (pos—1,hList) getPos (pos,hlList) = pos
goUrl 1 String -> HistState -> HistState getMax :: HistState -> Int
goUrl url (pos,hList) = (0, (url:(drop pos hlList)) getMax (_,hList) = {(length hList)-1

startState :: HistState
startState = (0, ["http://www.haskell.org"])

in
4 ™\
urlEnter ES
nextUrlES
\ o »Q
goUrI
getUrl
bPressES - navES | |
|
aceumk | o tStateES
]
hold e
histStateS
fPressES startState —| ~—
startState —)
5 :
(getPos histStateS) (getMax _histStated)
histPosS histMaxS
\. 5 / Page: 67

History List Semantics

= Essence of semantics is a few equations:

type HistState = (Int,[URL])

goBack .. HistState — HistState

goBack (pos, hlList) = (pos + 1, hlList)

goFwd .. HistState — HistState

goF'wd (pos, hlList) = (pos — 1, hlList)

goUrl . String — HistState — HistState

goUrl wurl (pos, hlList) = (O, url . drop pos hlist)

Page: 68

Space Invaders

—[B[x]

Demonstrates:

= Physical simulation

= Control systems

= Animation

= Dynamic Collections:

= Bullets, Invaders

...and of course:

= Fun!

Page: 69

Implementing Game Objects
- 00000/}

= Model each game object as a signal function:

simpleGun (Point2 z0 y0) = proc gin — do

-- Desired position:

gin =—mouseSF — (Point2 xd _)
-- Desired acceleration:

let ad = 10%x(2zd —z) — 5% v
-- basic physics:

ad —integral — v

v —integral — x

Page: 70

Simulated World

= "World” is a dynamic collection of SFs: (demo)

pSwitch

alien <mkmmymw > (%pawnOrKil{)

routing
Junction

N
AN

Fy
»
) [objectoutput]

bullet

Y

Overview
]

= Background / Motivation

= Foundations:
= Yampa — adaptation of FRP to Arrows framework
= Fruit — GUI model based on Yampa

= Small Example

= Extensions
= Continuations and Dynamic Collections

= Larger Examples
® Conclusions

Page: 72

Summary of Contributions

. Yampa (Chapters 3-5, [Courtney & Elliott 2001], [Nilsson, Courtney, Peterson
2002]):

= A purely functional model of reactive systems based on
synchronous dataflow.

= Based on adapting Fran [Elliott & Hudak 1997] and FRP [Wan & Hudak
2001] to Arrows Framework [Hughes 2000].

= Simple denotational and operational semantics.
= Haven (Chapter 6):
= A functional model of 2D vector graphics.

= Fruit (Chapters 7, 10, 11, [Courtney & Elliott 2001], [Courtney 2003]):
= A GUI library defined solely using Yampa and Haven.

o Dynamic Collections (Ch. 8, [Nilsson, Courtney, Peterson 2002]).
= Continuation-based and parallel switching primitives

Page: 73

Conclusions

= With Yampa, we can write rigorous executable
specifications of GUIs without appealing to
imperative programming or I/0.

= Purely functional model of GUIs enables:

= Precise reasoning about GUI program behavior.
= Clear account of GUI programming idioms.

= Prototype implementation embedded in Haskell:
http: //www.haskell.org/yampa
http://www.haskell.org/haven
http://www.haskell.org/fruit

Page: 74

Related Work: Fudgets

= [Carlsson & Hallgren 1993], [Carlsson & Hallgren 1998]

Fudgets Fruit
F hi ho = GUI b ¢ =
SP (hi+li) (ho+lo0) SF (GUIIn,b) (Pic,c)

Stream Processors
(discrete, asynchronous)

Signal Functions
(continuous, synchronous)

Extends stream-based I/0O

Defined denotationally

F() () may perform I/O

GUI () () performs no I/O

Uses Xlib protocol requests /
responses

Explicit, functional model of
input devices, graphics

Page: 75

