
Modeling User Interfaces in a
Functional Language

Antony Courtney

Advisor: Paul Hudak
Committee: John Peterson

Zhong Shao
Conal Elliott

Acknowledgement: Henrik Nilsson

Page: 2

Thesis

Thesis:

Functional Reactive Programming (FRP)
provides a suitable basis for writing
rigorous executable specifications of
Graphical User Interfaces.

Page: 3

Overview

Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

� Small Example
� Extensions
� Continuations and Dynamic Collections

� Larger Examples
� Conclusions

Page: 4

Background / Motivation (I)

� GUI Programming is difficult!
[Myers 1993] gives some reasons:
� Graphics, usability testing, concurrency, …

� GUI builders only help with the superficial challenges
(visual layout)
� still have to write code for interactive behavior
� programming model is still “spaghetti” of callbacks [Myers 1991]

� Historically: Many programming problems became much
easier once the theoretical foundations were understood.
� parsing before BNF [Padua 2001], relational DB model [Codd 1970], …

� We need:
A rigorous formal basis for GUI programming.

Page: 5

Related Work (I): Formal Models

Lots of formal approaches to UI specification:
� Task Models / ConcurTaskTrees (Paterno)
� Petri Nets / Interactive Cooperative Objects (Palanque)
� Model-based IDEs: HUMANOID / MASTERMIND (Szekely)

� Emphasis: UI analysis, design, evaluation
� My primary interest: UI implementation.

� Not full programming languages:
� Specifications not directly executable.
� What doesn’t get modeled? (input devices? graphics? layout?)
� Model-based IDEs: Semantics of generated programs?

[Szekeley 95]: "a lot of the semantics of the model is implicit in
the way the tools make use of the attributes being
modeled.”

Page: 6

Related Work (II) : FP

� Historically: strong connection between functional programming and
formal modeling.

� But: functional languages were once considered "weak" for expressing
I/O and user interaction.

� The "solution": monads / monadic IO [Wadler 1989]

we read: f :: IO a
as: “f performs some IO action and then returns an a.”

� type distinction between pure computations and imperative actions.
� very useful technique for structuring functional programs.

Page: 7

Background: FP and Monads

Q: But what is the denotation of type (IO a) ?
Answer:

Q: What are the formal properties of "World"?!

Answer: ???

Monadic IO tells us where IO actions occur in our
programs, but does nothing whatsoever to
deepen our understanding of such actions.

Page: 8

Background / Motivation

� Our goals:
1. A simple functional model of GUIs that:

� Makes no appeal to imperative programming.
� Uses only formally tractable types.
� Expressive enough to describe real GUIs:

� model input devices and graphics explicitly.

2. A concrete implementation of this model:
…so that our specifications are directly
executable.

Page: 9

Summary of Contributions

� Yampa (Chapters 3-5, [Courtney & Elliott 2001], [Nilsson, Courtney, Peterson

2002]):
� A purely functional model of reactive systems based on

synchronous dataflow.
� Based on adapting Fran [Elliott & Hudak 1997] and FRP [Wan & Hudak

2001] to Arrows Framework [Hughes 2000].
� Simple denotational and operational semantics.

� Haven (Chapter 6):
� A functional model of 2D vector graphics.

� Fruit (Chapters 7, 10, 11, [Courtney & Elliott 2001], [Courtney 2003]):
� A GUI library defined solely using Yampa and Haven.

� Dynamic Collections (Ch. 8, [Nilsson, Courtney, Peterson 2002]):
� Continuation-based and parallel switching primitives

Page: 10

Overview

� Background / Motivation
� Foundations:

Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

� Small Example
� Extensions
� Continuations and Dynamic Collections

� Larger Examples
� Conclusions

Page: 11

Yampa

� An implementation of Functional Reactive Programming (FRP) in
Haskell, using Arrows Framework [Hughes 2000].

� Key Concepts:
� Signal: function from continuous time to value:

� Signal Function: function from Signal to Signal:

Visually:
D E

Page: 12

Yampa Programming

� Implementation provides:
� a number of primitive SFs
� (arrow) combinators for composing SFs

� Programming consists of:
� composing SFs into a data flow graph.

…much like composing a digital circuit.

� Implementation approximates continuous-time
semantic model with discrete sampling.

Page: 13

Arrow Combinators for SFs

� Lifting (point-wise application):

arr f

f
b c

b c
fa

c d
ga

fa >>> ga

b d

� Serial Composition:

Page: 14

Other Arrow Combinators

� Use tuples to group signals:

sf1

sf2

sf1

sf2sf

� Other (derived) combinators to form arbitrary digraphs:

sf

c c

a b

Page: 15

Feedback

� Can define cyclic graphs with loop:

� Allows an SF to accumulate local state
…just like a digital circuit (flip flop).

� Delay needed on feedback signal to avoid a “black hole”.
…just like a digital circuit.

Page: 16

Discrete Event Sources

� A discrete event is a condition that occurs at
discrete points in time
� pressing of a button
� rising/falling edge of a Boolean signal

� A possible occurrence modeled by type:

� Some basic operations (used point-wise):

Page: 17

Event Processors

t o t o

hold 3

5

1

5
3
1

t o t o

accum 1

5
3
1

tag incr

Page: 18

Example: A Bounded Counter

bc :: Int -> Int -> SF (Event ()) Int

bc x0 max = …

� Initial value: x0
� Increment on each event until max reached
Implementation:

Page: 19

Arrows Syntax [Paterson 2001]

Page: 20

Arrows Syntax [Paterson 2001]

Page: 21

Arrows Syntax [Paterson 2001]

Page: 22

Arrows Syntax [Paterson 2001]

Page: 23

Arrows Syntax [Paterson 2001]

Page: 24

Arrows Syntax [Paterson 2001]

Page: 25

Concrete Syntax

bc :: Int -> Int -> SF (Event ()) Int

bc x0 max = loop (arr gateReq >>>

dAccumHold x0 >>> arr dup)

where gateReq :: (Event (),Int) -> Event (Int -> Int)

gateReq (incReq,n) =

(incReq `gate` (n < max)) `tag` incr

dup x = (x,x)

Page: 26

Basic Switching

� switch combinator switches from one SF to another on
event occurrence:

switch

sf0a
b

Ev c

kf

t

switch sf0 kf

Page: 27

Basic Switching

� switch combinator switches from one SF to another on
event occurrence:

switch

sf0a
b

Ev c

kf

t

v

Page: 28

Basic Switching

� switch combinator switches from one SF to another on
event occurrence:

switch

sf'

a
b

Ev c

kf

t

v

v

sf0

Page: 29

Basic Switching

� switch combinator switches from one SF to another on
event occurrence:

a b

t

sf'

Page: 30

A Brief History of Time (in FRP)

Evolution of the FRP semantic model (Chapter 2):
� Fran [Elliott & Hudak 1997]:

Behaviors are time-varying values (“signals”):
Behavior a | Time -> a

� SOE FRP [Hudak 2000] [Wan & Hudak 2000]:
Behaviors are functions of start time (“computations”):

Behavior a | Time -> Time -> a

Motivation: Avoid inherent space-time leak in:
x = y `switch` (e -=> z)

Page: 32

Evolution of Yampa

� Fran’s Behavior semantics:
� highly expressive
� difficult to implement efficiently (space/time leaks)

� SOE FRP’s Behavior semantics:
� Efficient, but basic model limited in expressive power
� Attempt to recover expressive power: runningIn

� Captures a running signal as a Behavior

� SOE FRP + runningIn:
� No type level distinction between signals and signal

computations (Behaviors).
� very confusing in practice.

� Implementation couldn’t handle recursive definitions.

Page: 34

What Yampa Gives Us

� A clear distinction between
Signals:

and Signal Functions:

…and ways to express both.
� Arrows framework:

� Arrow laws for reasoning about programs
� Std. library of combinators for specifying plumbing

� Explicit combinators help avoid time/space leaks.

� Arrows syntactic sugar:
� Concrete syntax for data flow diagrams.
� Alleviates syntactic awkwardness of combinator-based design.

Page: 35

Overview

� Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework

Fruit – GUI model based on Yampa

� Small Example
� Extensions
� Continuations and Dynamic Collections

� Larger Examples
� Conclusions

Page: 36

Brief Aside: Graphics Model

Haven (Chapter 6):
� Typed, functional interface to 2D vector graphics

� Programming model owes much to Pan [Elliott 2001]

Main Idea:
� Try to provide minimal set of primitives
� Provide higher-level functionality by composing

primitives.
Portable, Functional Interface:
� Implementations: Java2D, FreeType

Page: 37

� Instead of:

e.g.:

� Haven provides:

Compositionality in Haven

Page: 38

fillShape vs. imgCrop

imgCrop is far more versatile than fillShape:
� Use imgCrop on any image:

� color gradients:
gradient :: Point � Color � Point � Color � Image

� Compose crop operations:
imgCrop s1 ((imgCrop s2 …) `over`

(imgCrop s3 (imgCrop …)))

imgCrop
=

Page: 39

Fruit

What is a GUI?
� GUIs are Signal Functions:

� Signal types:
GUIInput – keyboard and mouse state
Picture – visual display (Image)
a,b – auxiliary semantic input and output signals

� GUIInput:

Page: 40

Fruit: Components and Layout

� Aux. signals connect GUI to rest of application.
� Components (slightly simplified interfaces):

� Text Labels:

� Buttons:

� Text fields:

� Layout Combinators:

Page: 41

Overview

� Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

Small Example
� Extensions
� Continuations and Dynamic Collections

� Larger Examples
� Conclusions / Future Work

Page: 42

Basic Fruit Example

� Classic VCR-style media controller:

� Only enable buttons when action is valid:
� i.e. "pause" only enabled when media is playing.

� Represent media state with:

Page: 43

Design

� just a simple FSM:

� Derive time-invariant constraints by inspection:
� playE: state /= Playing

� pauseE: state == Playing

� stopE: state /= Stopped

Page: 44

Fruit Specification (Visual)

� Visually:

Page: 45

Fruit Specification (Textual)

Page: 46

Evaluation

� The Fruit specification looks rather complicated:
� explicit hold operator to accumulate state
� feedback loop!

We can easily implement the media controller in
our favorite (imperative) language and toolkit.

So we should ask:
How does a Fruit specification compare to
an imperative implementation?

Page: 47

Imperative, OO Implementation

� Using Java/Swing and MVC design pattern:
� Implement time-varying state as a mutable field.
� Encapsulate state in a model class that supports

registration of listeners
� Listeners are notified when state is updated

� Implement a model listener for each button that
updates that button's enabled state.

� Implement action listeners for each button that
update the model's state.

� At program initialization time:
� construct objects, register listeners.
� relinquish control to the toolkit.

Page: 48

Visualising Java/Swing solution

� partial snapshot of heap at runtime:

Page: 49

Java/Swing Heap – Big Picture

Page: 50

Some Observations

From the heap snapshot, we can see:
A feedback loop exists in Swing implementation just as it
did in Fruit specification.

However:
� In Java, dataflow graph created implicitly and dynamically by

mutating objects.
� Error-prone! easy to update a field, but forget to invoke listeners…

� Java diagram is a snapshot of heap at one particular instant at
runtime.
� Can't derive such pictures from the program text.

� In contrast:
� Fruit diagram is the specification.

(or at least isomorphic…)

Being able to see complex relationships (feedback) enables
reasoning…

Page: 51

Reasoning with Specifications

Some questions we can ask / answer just by
inspection of (visual) specification:
� What effect does pressing "play" have on state?
� What GUI components affect state?
� How does the "play" button affect the "pause"

button?

In Yampa/Fruit these relationships are all
made explicit in the data flow diagram.
� purely functional model � no hidden side effects.

Page: 52

Reasoning: Proofs?

Q: If Yampa/Fruit provide a formal model, can we use
them to prove properties of reactive programs?

A: Of course! See Chapter 10:
� runSF_ based on scanl, operational semantics.
� TLA’s � (“always”) operator [Lamport 1994] for SF’s.
� An invariance theorem for SFs.
� Serves as a simple coinduction principle.
� Proof: induction on length of input sequence.

� Example proof: bounded counter is always bounded.
� Uses: case analysis over internal state & input, inv. thm.

� But..:
� We gain much reasoning power just by having a

precise type for GUIs.
� Simple data flow analysis by inspection.

Page: 53

Overview

� Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

� Small Example
� Extensions

Continuations and Dynamic Collections

� Larger Examples
� Conclusions

Page: 54

Motivation

� Give a modular account of dynamic user interfaces in
Fruit/Yampa.

� Example:

Page: 55

Search Pane – First Attempt

Basic Ideas: GUIs as first-class values, switching.
� Represent each row of search pane as a GUI:

� Can compose rows into a grid with aboveGUI:

� On more button, switch recursively into new grid:

Page: 56

Search Pane – First Attempt

Page: 57

Search Pane – First Attempt

Page: 58

The Problem with Switching

What happened?!
� As they execute, SFs may accumulate internal state.
� But this internal state is discarded on a switch:

t

Page: 59

Continuation-Based Switching

Solution: A “call/cc” for Signal Functions:

� Operational Semantics of SFs (Chapters 4,5):

� Internal state of running SF in its continuation.

� Expose this SF continuation during switching:

Page: 60

Fun with kSwitch

t

t

Page: 61

Dynamic Collections

Back to our dynamic search pane GUI:
� “More” button:
� kSwitch is sufficient.
� Compose “current grid” (SF continuation) with GUI

for another row.

� “Fewer” button?
� Problem: Can’t “invert” a >>> operation!
� Solution: Allow switching over collections of SFs

running in parallel…

Page: 62

pSwitch(B)

� Yampa provides pSwitch(B) (parallel switch):

� reshape function type is key to flexible updates.

Page: 63

pSwitch(B)

� Yampa provides pSwitch(B) (parallel switch):

initial
collection

switching event

reshape
function

� reshape function type is key to flexible updates.

Page: 64

Overview

� Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

� Small Example
� Extensions
� Continuations and Dynamic Collections

Larger Examples
� Conclusions

Page: 65

Web Browser with History

� Fwd, Back buttons
navigate history

� Buttons, location field
and clicking links
update history.

� Location field, buttons
updated in response
to navigation events.

Page: 66

Web Browser w/ History

Page: 67

History List

Page: 68

History List Semantics

� Essence of semantics is a few equations:

Page: 69

Space Invaders

Demonstrates:
� Physical simulation
� Control systems
� Animation
� Dynamic Collections:

� Bullets, Invaders

…and of course:
� Fun!

Page: 70

Implementing Game Objects

� Model each game object as a signal function:

Page: 71

Simulated World

� “World” is a dynamic collection of SFs: (demo)

Page: 72

Overview

� Background / Motivation
� Foundations:
� Yampa – adaptation of FRP to Arrows framework
� Fruit – GUI model based on Yampa

� Small Example
� Extensions
� Continuations and Dynamic Collections

� Larger Examples
Conclusions

Page: 73

Summary of Contributions

� Yampa (Chapters 3-5, [Courtney & Elliott 2001], [Nilsson, Courtney, Peterson

2002]):
� A purely functional model of reactive systems based on

synchronous dataflow.
� Based on adapting Fran [Elliott & Hudak 1997] and FRP [Wan & Hudak

2001] to Arrows Framework [Hughes 2000].
� Simple denotational and operational semantics.

� Haven (Chapter 6):
� A functional model of 2D vector graphics.

� Fruit (Chapters 7, 10, 11, [Courtney & Elliott 2001], [Courtney 2003]):
� A GUI library defined solely using Yampa and Haven.

� Dynamic Collections (Ch. 8, [Nilsson, Courtney, Peterson 2002]):
� Continuation-based and parallel switching primitives

Page: 74

Conclusions

� With Yampa, we can write rigorous executable
specifications of GUIs without appealing to
imperative programming or I/O.

� Purely functional model of GUIs enables:
� Precise reasoning about GUI program behavior.
� Clear account of GUI programming idioms.

� Prototype implementation embedded in Haskell:
http://www.haskell.org/yampa
http://www.haskell.org/haven
http://www.haskell.org/fruit

Page: 75

Related Work: Fudgets

� [Carlsson & Hallgren 1993], [Carlsson & Hallgren 1998]

Defined denotationallyExtends stream-based I/O

GUI b c =

SF (GUIIn,b)(Pic,c)

F hi ho =

SP (hi+li) (ho+lo)

Explicit, functional model of
input devices, graphics

Uses Xlib protocol requests /
responses

GUI()() performs no I/OF()() may perform I/O

Signal Functions
(continuous, synchronous)

Stream Processors
(discrete, asynchronous)

FruitFudgets

