Functionally Modeled User Interfaces

Antony Courtney*

Dept. of Computer Science
Yale University
New Haven, CT 06520
antony@apocalypse.org

Abstract. Fruit is a new user interface toolkit based on a formal model
of user interfaces. This formal basis enables us to write simple, concise
ezecutable specifications of interactive applications. This paper presents
the Fruit model and several example specifications. We consider one ex-
ample (a basic media controller) in detail, and contrast the executable
specification style of Fruit with a more traditional “rapid prototype” im-
plementation using an imperative, object-oriented toolkit (Java/Swing)
to show the benefits of our approach.

Keywords: formal methods, executable specifications, user interface toolkits,
functional programming, data flow, constraints

1 Introduction

It is widely recognized that programs with Graphical User Interfaces (GUIs)
are difficult to design and implement. Myers [14] enumerated several reasons
why this is the case, addressing both high-level software engineering issues (such
as the need for prototyping and iterative design) and low-level programming
problems (such as concurrency). While many of these issues are clearly endemic
to GUI development, our own subjective experience (shared by many others) is
that even with the help of state-of-the-art toolkits, GUI programming still seems
extremely complicated and difficult relative to many other programming tasks.

Historically, many difficult programming problems became easier to address
once the theoretical foundations of the problem were understood. To cite just
one example, precedence-sensitive parsers became much easier to implement after
the development of context-free grammars and the Backus Naur Formalism. In
contrast, while some formal models of GUIs have been proposed [7, 3], this work
has been largely divorced from the world of practical GUI toolkits. To see this,
we need only ask the question “what is a GUI?” in the context of any modern
GUI toolkit. In all toolkits that we are aware of, the answer is either entirely

* This material is based upon work supported in part by a National Science Foundation
Graduate Research Fellowship. Any opinions, findings, conclusions or recommenda-
tions expressed in this publication are those of the author and do not necessarily
reflect the views of the National Science Foundation.

informal, or depends on artifacts of the toolkit implementation, such as objects,

imperative state, non-deterministic concurrency or I/O systems, each of which

has an extremely difficult and complicated formal semantics in and of itself.
This situation lead us to pose the following questions:

— While a formal account of GUIs based on objects, imperative programming,
and I/0 systems is clearly sufficient, are such concepts necessary?

— Is there a simpler formal model of GUIs that is still powerful enough to
account for GUIs in general?

To answer these questions, we have developed Fruit (a Functional Reactive User
Interface Toolkit) based on a new formal model of GUIs. Fruit’s foundational
model (called Yampa) is based on two simple concepts: signals, which are func-
tions from real-valued time to values, and signal functions, which are functions
from signals to signals. GUIs are defined compositionally using only the Yampa
model and simple mouse, keyboard and picture types.

While there are many possible formal models of GUIs, we believe the Fruit
model is compelling for a number of reasons:

— The concepts of signal and signal function in the Fruit model have direct
analogues in digital circuit design and signal processing. This allows us to
borrow ideas from these established domains, and also resonates with our
own experience, in which programmers speak of “wiring up” a GUI to de-
scribe writing event handlers.

— Fruit specifications are extremely concise. Small interactive GUIs can be
written with one or two lines of code, with minimal attention to the kind of
boiler-plate that plagues modern GUI toolkits.

— The Fruit model enables a clear account of the connection between the GUI
and the non-GUI aspects of the application, and allows a clear separation of
these aspects using the Model/View/Controller design pattern [12].

— The Fruit model makes data flow explicit. As we will discuss in detail in
section 4, capturing the pattern of data flow relationships explicitly is fun-
damentally useful when reasoning about implementations of graphical inter-
faces.

Since we are interested in relating our formal model to real toolkit implemen-
tations, we have developed a prototype implementation! of the Fruit GUI model
as a library for the non-strict functional language Haskell. We chose Haskell as
a host language because we can use Haskell’s lazy evaluation to design control
structures well suited to our model, while leveraging Haskell’s base language
features (such as expression syntax, functions, type system, etc.). However, we
wish to emphasize that the Fruit model is independent of the host programming

1 We refer to our implementation as a “prototype” because we do not yet provide
a complete set of pre-packaged GUI components (widgets) and because the per-
formance of our current implementation is too slow to be considered a production
toolkit. However, the prototype is capable of running all of the examples presented
in this paper, and many others.

language. Previous work has explored how Fruit’s foundational model could be
embedded in Java, and we have also explored a simple visual syntax that we
use in many of the diagrams in this paper. We will explain Haskell syntax as it
is introduced, so that no previous knowledge of Haskell is required to read this
paper.

The remainder of this paper is organized as follows. In section 2 we define the
Fruit model, and give simple but precise definitions for some useful primitives.
In section 3 we present a small example (a control panel for a media player) in
detail to demonstrate how Fruit is used to specify basic GUIs. In section 4, we
compare the Fruit specification of the media player with a corresponding im-
perative implementation to clarify the benefits of functional modeling. Section 5
discusses dynamic user interfaces and scalability issues. Section 6 discusses re-
lated work. Section 7 presents our conclusions and describes plans for future
work.

2 Model

In this section, we present our model of reactive systems and show how GUIs
can be accommodated within that model.

Foundations: Yampa

Yampa is a Haskell library for writing declarative, executable specifications of
reactive systems. Yampa is based on ideas from Functional Reactive Animation
(Fran) [5] and Functional Reactive Programming (FRP) [24], adapted to the
Arrows framework recently proposed by Hughes [9]. Yampa is based on two
central concepts: signals and signal functions.

Signals A signal is a function from time to a value:
Signala = Time —a

Time is continuous, and is represented as a non-negative real number. The
type parameter a specifies the type of values carried by the signal, and is anal-
ogous to a template parameter in C++. For example, if Point is the type
of a two-dimensional point, then the time-varying mouse position has type
Signal Point. As another example, if Picture is the type of a single visual
image, then Signal Picture is the type of a continuous, time-varying Picture,
i.e. an animation.

Signal Functions A signal function is a function from Signal to Signal:
SFab = Signal a — Signal b

We can think of signals and signal functions using a simple circuit analogy,
as depicted in figure 1. Line segments (or “wires”) represent signals, with arrows

Fig. 1. A Signal Function, SF a b

indicating the direction of flow. Boxes (or “components”) represent signal func-
tions. If we connect the signal function’s input port to a Signal a value, we can
observe a Signal b value on the signal function’s output port.

A Yampa specification defines a signal function. In order to ensure that
Yampa specifications are executable in a reasonable amount of time and space,
we further require that all signal functions are causal: The output of a signal
function at time ¢ is uniquely determined by the input signal on the interval [0, ¢].
In order to guarantee this causality requirement, Yampa provides a small num-
ber of primitive signal functions and composition operators. All of the primitive
signal functions obey causality, and all of the composition operators preserve
causality.

Composing Specifications: A Simple Example

Fruit is a modest library of types and functions for specifying graphical user
interfaces using Yampa. To illustrate the essence of composing a Fruit specifica-
tion, consider the following type:

type SimpleGUI = SF GUIInput Picture

The GUIInput type represents an instantaneous snapshot of the keyboard and
mouse state (formally just a tuple or record). The Picture type denotes a single,
static visual image.

A SimpleGUI, then, is a signal function that maps a Signal of GUIInput val-
ues to a Signal of Picture values. As an example of a SimpleGUI, consider a
challenge for GUI programming languages posed by Myers many years ago [13]:
a red circle that follows the mouse. For the moment we assume the Fruit li-
brary provides a signal function, mouseSF, that can extract the mouse’s current
position from the GUIInput signal:?

mouseSF :: SF GUIInput Point

We will assume the existence of a graphics library that defines basic types and

functions for static 2-D images, such as points, shapes, affine transforms and
images; see Pan [4] for the formal details. Using this graphics library, we can
write: 3

2 Haskell-ism: The :: is a type declaration, and should be read as “has type”

3 Haskell-ism: In order to support Currying and partial application, Haskell follows the
lambda calculus tradition of writing function application as juxtaposition: f(z,y) in
traditional mathematical notation is written as £ x y in Haskell.

-- a red ball positioned at the origin:
ball :: Picture
ball = withColor red circle

moveBall :: Point -> Picture
moveBall p = translatePic ball p

Given a point p whose components are x and y, moveBall p is a picture of the
red ball spatially translated by amounts given by x and y on the respective axes.

Note that moveBall is a function over static values, not over signals. However,
we can use Yampa’'s primitive lifting operator to lift the moveBall function to
obtain a signal function that maps a time-varying point to a time-varying picture
(of type SF Point Picture). Given any static function f of type a -> b, LiftSF
f is a signal function that maps a Signal a to a Signal b. Lifting denotes point-
wise application of the function: If the input signal to the lifted function has
some value z at time ¢, then the output signal has value f(z) at time ¢.

To allow the mouse to control the ball’s position we connect the output signal
of mouseSF to the input signal of the lifted moveBall using serial composition,
as shown in figure 2.

Y

in X /\ .
& mouseSF mouse »(moveBall bpic

N~

Y

Fig. 2. ballGUI Specification

Although the diagram of figure 2 is a faithful representation of the specifica-
tion, we use a textual concrete syntax. Our concrete syntax consists of Haskell
syntax with some modest syntactic extensions [19] that enable us to directly
transliterate data flow diagrams into textual form.? Note that, in figure 2 we
have explicitly labeled the signals inside of ballGUI: gin (the GUIInput signal
to ballGUI), mouse (the Point signal produced by mouseSF and fed as input
to the lifted form of moveBall), etc. In our concrete syntax, we would write
ballGUI as:

ballGUI :: SimpleGUI

ballGUI = proc gin -> do
gin >- mouseSF -> mouse
mouse >- 1liftSF moveBall -> bpic
bpic >- returnA

4 We have also considered implementing a programming environment that would allow
the user to compose specifications directly as data flow diagrams. However, such vi-
sual language environments present many substantial UI design and implementation
problems in their own right, and would probably still need an internal representation
very similar to the linear textual syntax presented here.

The above definition is read as follows: The proc keyword introduces a signal
function definition. Haskell uses indentation to specify scoping (as in Python),
so the body of the proc extends all the way to the returnA on the last line.
Immediately following the proc keyword is a pattern. This pattern introduces a
variable, gin, that is matched point-wise against the input signal. By point-wise,
we mean that at every sample point, gin is bound to a snapshot (sample) of the
corresponding signal.

Following the do keyword are a sequence of wiring definitions of the form:

exp >= sf => pat

where exp is an expression specifying the input signal, sf is a signal function,
and pat is a pattern that introduces identifiers bound point-wise to samples of
the output signal.

The left-hand side of each wiring definition can be any expression. Each such
expression is computed point-wise (i.e. at every sample time). Since the lifting
operator 1iftSF denotes point-wise function application, we can often replace
explicit use of 1iftSF with a slightly more complex expression on the left hand
side of a wiring pattern. For example, we can rewrite ballGUI more concisely
as:

ballGUI :: SimpleGUI

ballGUI = proc gin -> do
gin >- mouseSF -> mouse
moveBall mouse >- returnA

Because the expression moveBall mouse is computed point-wise, this specifies
that, at every point in time, the output signal of the entire proc is moveBall
applied to mouse, where mouse is the point-wise sample of the output signal of
mouseSF. While this is just a syntactic shorthand (the data-flow diagram is the
same in both versions), this latter version of bal1GUT helps clarify the connection
between point-wise expressions and one-way constraints. We can interpret the
last line as a constraint specifying that, at every point in time, the output picture
produced by ballGUI must be ball translated by the current mouse position.

Discrete Event Sources

While some aspects of user interfaces (such as the mouse position) are naturally
modeled as continuous signals, other aspects (such as the mouse button being
pressed) are more naturally modeled as discrete events. To model discrete events,
we introduce the Event type:

data Event a = EvO0cc a -- an event occurrence
| NoOcc -- a non-occurrence

The above is an algebraic data type with two alternatives, analogous to (for
example) a discriminated union type in Modula-2. This declaration specifies
that, for any type 7T, all values of type Event T are either of the form (EvOcc v
) where v is a value of type T, or of the form NoOcc.

A signal function whose output signal carries values of type (Event T) for
some type T is called an event source. If the event source has an occurrence at
time ¢, then sampling the output signal of the event source at ¢ will yield a value
(EvOcc v). At non-occurrence times, sampling yields the value NoOcc. The value
v carried with an event occurrence may be used to carry extra information about
the occurrence.

What is a GUI?

The SimpleGUI type is sufficient for describing GUIs that map a GUIInput signal
to a Picture signal. This accounts for the visual interaction aspects of a GUI, but
real GUI-based applications connect the GUI to other parts of the application
not directly related to visual interaction. To model these connections we expand
the SimpleGUI definition to:

type GUI a b = SF (GUIInput,a) (Picture,b)

The input and output signals of SimpleGUI have been widened by pairing each
with a type specified by a type parameter. These extra auziliary semantic signals
enable the GUI to be connected to the non-GUI part of the application.

Library GUIs

The Fruit library defines a number a number of standard user interface com-
ponents (or “widgets”) found in typical GUI toolkits as GUI values. Here we
briefly present the programming interface to these components. Note, however,
that there is nothing special or primitive about these components; they are just
ordinary GUI values, defined using the Yampa primitives and graphics library.

Labels The simplest standard GUI components are labels, defined as:®
flabel :: LabelConf -> GUI LabelConf ()

ltext :: String -> LabelConf

A label is a GUI whose picture displays a text string taken from its auxiliary
input signal, and produces no semantic output signal.

The behavior and appearance of a component at any point in time is de-
termined by its configuration options. LabelConf is the type of configuration
options specific to the flabel component. For labels, LabelConf has just one
constructor, 1text, which specifies the string to display in the label. Note, too,
that flabel is defined as a function that takes a LabelConf argument and re-
turns a GUI. The LabelConf argument allows the user to specify an initial default
configuration for the properties of the GUI, analogous to the role of constructor
arguments in object-oriented toolkits. If a value for a particular property is spec-
ified by time-varying input signal to the GUI, the value specified in the input
signal will override the initial configuration.

5 Haskell’s unit type (written ()) is the type with just one value, also called unit, and
also written as (). Unit serves a similar role to the void type in ANSI C.

Buttons A Fruit button (fbutton) is a GUI that implements a standard button
control. The declaration of fbutton is:

fbutton :: ButtonConf -> GUI ButtonConf (Event ())

btext :: String -> ButtonConf
enabled :: Bool -> ButtonConf

There are two constructors for the ButtonConf type: one to specify the string
to display in the button, and another to control whether the button is enabled.
A button that is disabled will have a grayed-out appearance, and does not react
to mouse or keyboard input. A button is an event source that has an occurrence
when the primary mouse button is pressed when the mouse is positioned over
the button. Each event occurrence on the output signal carries no information
other than the fact of its occurrence, hence the type Event ().

3 A Basic Example

As a concrete example of a Fruit specification, consider the classic VCR-style
media controller illustrated in figure 3. The control panel provides a user interface
to the simple finite state machine shown in figure 4. Each button is only enabled
if pressing the button is a valid action in the application’s current state.

_[o/x]

Play
state: Stopped

Fig. 3. Basic Media Controller

The implementation of the media controller in Fruit is easily derived from
the state machine in figure 4, and is shown in figure 5. The implementation uses
an enumerated type to encode the current statef:

data MediaState = Playing | Paused | Stopped

Each of the three buttons is made by fbutton, and playF, pauseE and stopE
are the output signals from each button (of type Event ()). Each event occur-
rence is tagged with its corresponding state, and these event signals are merged
to form a single event signal, nextStateFE, whose occurrences carry the next
state. The nextStateE event signal is fed to the hold primitive to form a con-
tinuous signal, state, representing the current state. The hold primitive provides

5 In C, this might be written as:
typedef enum {PLAYING, PAUSED, STOPPED} MediaState;

Fig. 4. Media Controller Finite State Machine

nextStateE

playE

Playing pauseE
Paused Sl()[)E
F—:topped
| Play | | Pause " | Stop

enabled: enabled: enabled:
(state/=Playing) (state==Playing) (state/=Stopped)

A

Fig. 5. Media Controller Implementation

a continuous view of a discrete event signal by “latching” (or holding) the value
of the last event occurrence across a period of non-occurrences, as illustrated in
figure 6. Finally, the enabled property of each button is determined by a simple
predicate applied point-wise to the state signal. Each equation is derived directly
from the state transition diagram of figure 4 by inspection.

Note that this diagram only illustrates the wiring of the auxiliary semantic
signals of each button; the GUIInput and Picture signals have been omitted.
This is because we have abstracted the common pattern of simple horizontal or
vertical layout of GUIs into a new type, Box, that captures this pattern. A Box
is a sequence of GUIs that will be arranged horizontally or vertically. Box values
wire the GUIInput and Picture signals of each child GUI to obtain a linear
arrangement of the GUIs in the order in which they appear in the program text,
so only the auxiliary semantic signals of each child GUI need to be specified
explicitly.

The textual syntax for the media controller corresponds directly to the visual
syntax of figure 5:

5) 5«\»
3 34
1 l{
0 3
t—>

Fig. 6. Semantics of hold

playerCtrl :: GUI () MediaState
playerCtrl = hbox (proc _ -> do
enabled (state /= Playing)
>- fbutton (btext "Play") -> playE
enabled (state == Playing)
>- fbutton (btext "Pause") -> pauseE
enabled (state /= Stopped)
>- fbutton (btext "Stop") -> stopE
(mergeE (tag playE Playing)
(mergeE (tag pauseE Paused)
(tag stopE Stopped)))
>- boxSF (dHold Stopped) -> state
state >- returnA)

While the code follows directly from the diagram, a couple of points are worthy
of mention:

First, this definition makes use of recursive bindings. In this case, state
is used in the expression for the input signals on the first three lines, but is
not defined until the line preceding ... >- returnA. The formal account of
recursive bindings is straightforward, using a standard fixed point operator. As
in digital circuit design, there must be an infinitesimal delay somewhere on the
feedback path to ensure that the recursion is well-formed. In this example, the
dHold primitive introduces a delay between its event signal input and continuous
output. While the introduction of delays might appear subtle and arbitrary at
first glance, in practice it is almost always obvious where to introduce the delays
in a specification.

Second, the boxSF function lifts an ordinary signal function into Box; such
lifted signal functions have no visual appearance in the final GUI. The func-
tion hbox evaluates to a GUI with the contents of its Box argument laid out
horizontally.

To complete the interface of figure 3, we place playCtrl and a label in
a vertical box, and connect the state output signal of playCtrl to the input
signal of the label:”

" Haskell-isms: show here has type (MediaState -> String); the ++ operator is string
concatenation.

player :: GUL () Q)
player = vbox (proc _ -> do

() >- box playerCtrl -> state
(1text ("state: " ++ (show state))) >- label)

Once again, the connection between point-wise computations and one-way con-
straints is apparent in the specifications of playCtrl and player: We can inter-
pret the input signal to each button as a constraint specifying the relationship
between the enabled property of the button and a predicate applied to the state
signal. Similarly, we can interpret the input signal to the label as constraint
that specifies that, at every point in time, the label’s text property must be equal
to the given string expression computed from state.

4 Evaluation

Fruit provides a formal model of user interfaces, and demonstrates that this
model can be used as the basis for a GUI toolkit. But is there any practical ben-
efit to functional modeling? After all, an experienced GUI programmer could
implement the media player example in a few minutes using their favorite im-
perative language and GUI toolkit. At first glance, the specification in figure 5 (or
its corresponding textual syntax) may even seem somewhat more complicated
than a corresponding imperative program, since it involves both an explicit hold
operator to introduce local state and a feedback loop.

To see why Fruit specifications are useful, consider how the media controller
might be implemented in a modern, object-oriented imperative toolkit, such as
Java/Swing. A good object-oriented design would encapsulate the current state
of the media controller into a model class that supports registration of listener
classes to be notified when the model’s state is updated. At initialization time,
the implementation would create the model and the button instances, register
listeners on the model instance that update the enabled property of the buttons,
and register listeners on each button instance that update the state of the model,
as illustrated in figure 7. As this diagram illustrates, a feedback loop exists at
runtime in this object-oriented imperative implementation, just as it does in the
Fruit specification. In fact, a more accurate diagram would repeat this cyclic
graph structure once for each of the other two buttons, with each sub-graph
sharing the same model instance — a considerably more complex structure than
figure 5.

The key difference between figures 5 and 7 is that the former is a diagram of a
static specification, while the latter is a visualization of a partial snapshot of the
heap at runtime. In the Swing implementation, the feedback loops are hidden
from the programmer in the listener lists in the implementation of the model and
button classes. Even with whole program analysis, there is no reliable, systematic
way for either the programmer or a programming environment to recover figure 7
directly from the source code of the Java/Swing implementation. In contrast,
figure 5 is isomorphic to the (static) text of the specification. In short, a Fruit

ActionListener

model [e}
public void actionPerformed(...) {
JButton model.setState (model.Playing) ; Model

text "Play" ! state Stopped
enabled frue listeners
listeners / ______ [ERTU RN
______ 7T T 77777 PropertyChangeListener
model E/
playButton
L e void propertyChanged () { |

playButton.setEnabled (model.getState () !=Playing);
}

)

Fig. 7. Runtime Heap in Java/Swing Implementation

specification differs from an imperative implementation by making data flow
dependencies explicit in the specification.

So why is it useful to specify data flow dependencies explicitly?

First, explicit dependencies encourage programmers to think in terms of time-
invariant relationships between different components of the application. The
considerable literature on constraints has made the case quite well that this is a
higher-level view of user interfaces. Instead of writing event handlers that update
mutable objects in response to individual events, the Fruit model encourages
writing declarative equations that specify the relationships between components
of the interface that must hold at every point in time.

The data flow style also eliminates a small but important class of program-
ming errors. In traditional imperative event handlers, every event handler must
include code to update all of the appropriate objects in response to the event.
A common source of subtle bugs in imperative GUI programs is forgetting to
update some particular object in response to a particular event, or (even worse)
updating the local state of an object, but forgetting to notify registered listeners.
In contrast, point-wise dependencies in Fruit are propagated automatically by
the implementation.

Making data flow dependencies explicit also enables precise specification of
design patterns related to data flow. For example, the classic Model / View /
Controller (MVC) design pattern [12] enables multiple interactive views of the
same underlying data set, and has become the cornerstone of modern object
oriented GUI toolkits. The essence of MVC is decoupling of the time-varying
application state (the model) from the graphical interface, so that the model may
be observed and updated by multiple user interface objects. This decoupling can
be expressed in Fruit by simply decoupling the state accumulation primitive (
hold, in the media controller example) from the rest of the GUI. Multiple views
and controllers may then be wired to share the same model, and this sharing
will be manifest in the specification itself.

Finally, using data flow dependencies as the exclusive mechanism for commu-
nication between components of the application enables simple, precise reasoning
about causal relationships directly from the specification. For example:

— (forward reasoning): “What effect does pressing the ‘Play’ button have on
the program state?” This is easily determined from figure 5 by tracing the
path from the play button to the state signal.

— (backwards/dependency reasoning): “What GUI components affect the state?”
This is easily determined by tracing backwards along all signal lines that en-
ter the hold primitive that forms the state signal.

— (component interactions): “How does the ‘Play’ button affect the ‘Pause’
button?” This is determined by tracing the directed path from the first com-
ponent to the second. Note that if the second component is not reachable
from the first, then, since a functional specification can have no hidden side
effects, the first component has no effect whatsoever on the second compo-
nent.

In an imperative setting (even an object-oriented one), this kind of reasoning is
simply not tractable. Imperative GUI implementations coordinate their activities
via side effects: One callback writes to a variable or property that is subsequently
read by others. Since any callback may directly or indirectly invoke a method or
function that updates the global mutable state used by some other callback, there
is no practical method for reasoning about or controlling interactions between
different parts of the user interface.

5 Dynamic Interfaces

One valid concern about using the media controller example to compare a func-
tional, data flow style of specification with an imperative implementation is that
the data flow graph for this example is static: The user interface has a fixed set of
GUI components for the lifetime of the application. What about user interfaces
where GUI components appear to be added or removed from the interface at
runtime? Such interfaces are easily accommodated in an imperative setting by
adding or removing components from the interface and updating listener lists at
runtime, using (for example) Swing’s Container interface.

Dynamic interfaces may also be specified in Fruit, by using the dynamic col-
lections features of Yampa [15]. As noted in section 2, signals functions (and
hence GUIs) are first-class values: they may be passed as arguments, stored in
data structures, returned as results, etc. Yampa’s dynamic collections primitives
exploit the first-class nature of signal functions to maintain a time-varying collec-
tion of signal functions, all of which are executing in parallel. We have succesfully
applied Yampa’s dynamic collections primitives to build many highly dynamic
user interfaces, such as games and simulations. A full discussion of using these
primitives for dynamic user interfaces is outside the scope of this paper; suffice it
to say that they enable encapsulation of the dynamic aspects of a user interface
without sacrificing modularity or reasoning power.

6 Related Work

There have been numerous previous proposals for formal models of graphical user
interfaces, such as User Action Notation (UAN) [8] or Paterno’s ConcurTask-
Trees [17]. The emphasis in most of these formalisms is typically on modeling
user tasks [18], i.e. a logical description of actions to be performed by the user
to achieve certain goals. Such task models fit somewhere between requirements
specification and design in the classical software engineering process. In contrast,
the formalism presented here is focused solely on user interface implementations.
Task models are typically very high level, focused on the (human) user, and are
not directly executable. In contrast, Fruit specifications are comparitively low
level, make no direct mention of the user, and are directly executable. Many
tools have been proposed to assist in deriving executable user interface imple-
mentations from high-level task model specifications [22]. Unfortunately, in most
cases the precise semantics of such tools and the code that they generate is an
implicit property of the tool’s implementation. Since Fruit provides a rigorous
formal basis for specifying GUI implementation, it would be very interesting to
develop a tool to map high-level task models into low-level Fruit specifications.

Another formalism for modeling user interface implementations is Palanque’s
Petri net based Interactive Cooperative Objects (ICO) [16]. Like Fruit, ICO en-
ables the programmer to give a precise specification of the run-time behavior
of a graphical user interface. The core model of ICOs is Petri Nets, a simple
formalism with well-understood semantics. ICOs allow Petri net models to be
organized into object-oriented interfaces, in which an object’s reaction to method
invocations is specified by the Petri net. One key difference between Fruit and
ICOs is that where ICOs use objects to organize core models into higher level
abstractions, Fruit uses a (functional) host language to provide abstraction ca-
pabilities and general computation. An important consequence of embedding in
a functional language is that Fruit models retain reasoning power and semantic
clarity while still being directly executable.

Data flow models and languages date back to the sixties [20, 11]. Lucid [23],
Signal [6] and Lustre [2] are examples of synchronous data flow languages ori-
ented towards control of real-time systems. Jacob et al [10] propose a data flow
model for user interfaces, including both continuous variables and discrete event
handlers. However, their model focuses on modeling “post-WIMP” user interac-
tion, and is cast in an imperative, object-oriented setting. In contrast, the Fruit
model demonstrates that the data flow model is applicable even in the classical
WIMP setting, and and does not depend on objects or imperative programming.
As discussed in section 4, we believe that using data flow as the sole basis for
our specifications makes reasoning about specifications much more tractable.

In the realm of user interface toolkits, the closest relatives to Fruit are the
FranTk [21] and Fudgets [1] toolkits for Haskell. FranTk is similar to Fruit
in the sense that it too uses the Fran reactive programming model to specify
the connections between user interface components. However, FranTk uses an
imperative model for creating widgets, maintaining program state, and wiring of
cyclic connections. The programming interface to Fudgets is very similar to that

of Fruit, although Fudgets is based on discrete, asynchronous streams, whereas
Fruit is based on continuous, synchronous signals. Another key difference is that
the Fudgets system allows any Fudget to perform arbitrary I/O actions, whereas
such connections to the I/O system would have to be made explicitly in Fruit.

7 Conclusions and Future Work

This paper presented Fruit, a new user interface toolkit based on a synchronous
data flow model of reactive systems, and some small example specifications us-
ing Fruit. The novel feature of Fruit specifications is that they make data flow
dependencies explicit in the specification. Explicit data flow depencies enable
simple, precise reasoning about runtime behavior that is difficult or impossible
to perform on a traditional imperative, object-oriented program.

We have implemented a prototype of Fruit capable of running all of the
examples presented in this paper, and many others, including a small web
browser and a “space invaders” video game. Fruit is available for download from
http://www.haskell.org/fruit.

In the near term, we are interested in developing a highly optimized imple-
mentation of Yampa, and in expanding our widget set to include a substantial
subset of the components implemented in other modern toolkits. In the longer
term, we would like to explore using the visual syntax of figure 5 in an interface
builder tool, to enable a designer to specify interface behavior (rather than just
static layout) via direct manipulation.

8 Acknowledgements

This work would never have been possible without the contributions of Conal El-
liott and Henrik Nilsson, my direct collaborators on Fruit and Yampa. I am also
grateful to Paul Hudak, John Peterson and Valery Trifonov for many patient,
thoughtful discussions on the ideas presented here. Finally, thanks to Ross Pa-
terson, Magnus Carlsson and many anonymous reviewers for providing valuable
feedback on early drafts of this paper.

References

[1] M. Carlsson and T. Hallgren. Fudgets - Purely Functional Processes with applica-
tions to Graphical User Interfaces. PhD thesis, Chalmers University of Technology,
March 1998.

[2] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE : A declarative
language for programming synchronous systems. In Proceedings of the 14th ACM
Symposium on Principles of Programming Languages, New York, NY, 1987. ACM.

[3] A.Dix and C. Runciman. Abstract models of interactive systems. In Proceedings
of the HCI’85 Conference on People and Computers: Designing the Interface, The
Design Process: Models and Notation for Interaction, pages 13—22, 1985.

[4]
(5]
(6]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

C. Elliott. Functional images. (to appear) Journal of Functional Programming
(JFP), 2001.

C. Elliott and P. Hudak. Functional reactive animation. In International Confer-
ence on Functional Programming, pages 163-173, June 1997.

T. Gautier, P. le Guernic, and L. Besnard. SIGNAL: A declarative language for
synchronous programming of real-time systems. In G. Kahn, editor, Functional
Programming Languages and Computer Architecture, pages 257-277. Springer-
Verlag, Berlin, DE, 1987. Lecture Notes in Computer Science 274; Proceedings of
Conference held at Portland, OR.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, June 1987.

H. R. Hartson and P. D. Gray. Temporal aspects of tasks in the user action
notation. Human-Computer Interaction, 7(1):1-45, 1992.

J. Hughes. Generalising monads to arrows. Science of Computer Programming,
(37):67-111, 2000.

R. J. K. Jacob, L. Deligiannidis, and S. Morrison. A software model and specifi-
cation language for non-WIMP user interfaces. ACM Transactions on Computer-
Human Interaction, 6(1):1-46, 1999.

R. M. Karp and R. E. Miller. Properties of a model for parallel computations:
Determinacy, termination, queuing. SIAM J. Applied Math. 14, (6):1390-1411,
Nov. 1966.

G. Krasner and S. Pope. A description of the model-view-controller user interface
paradigm in the smalltalk-80 system, 1988.

B. A. Myers, editor. Languages for Developing User Interfaces. Jones and Bartlett
Publishers, 1992.

B. A. Myers. Why are human-computer interfaces difficult to design and im-
plement? Technical Report CMU-CS-93-183, Computer Science Department,
Carnegie-Mellon University, July 1993.

H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming,
continued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop
(Haskell’02), pages 51-64, Pittsburgh, Pennsylvania, USA, Oct. 2002. ACM Press.
P. Palanque and R. Bastide. Interactive Cooperative Objects : an Object-Oriented
Formalism Based on Petri Nets for User Interface Design. In IEEE / System Man
and Cybernetics 93, pages 274-285. Elsevier Science Publisher, Oct. 1993.

F. Paterno. Model-Based Design and Evaluation of Interactive Applications. Ap-
plied Computing. Springer-Verlag, 1999.

F. Paterno. Task models in interactive software systems. In S. K. Chang, edi-
tor, Handbook of Software Engineering € Knowledge Engineering. World Scientific
Publishing Co., 2001.

R. Paterson. A new notation for arrows. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2001), September
2001.

C. A. Petri. Kommunikation mit Automaten. Bonn: Institut f"ur Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962.

M. Sage. Frantk: A declarative gui system for haskell. In Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP 2000),
September 2000.

P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher.
Declarative interface models for user interface construction tools: the MASTER-
MIND approach. In FHCI, pages 120-150, 1995.

[23] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language.
Number 22 in A.P.I.C. Studies in Data Processing. Academic Press, London, 1985.

[24] Z. Wan and P. Hudak. Functional reactive programming from first principles.
In Proc. ACM SIGPLAN’00 Conference on Programming Language Design and
Implementation (PLDI’00), 2000.

