
The Yampa Arcade∗

Antony Courtney
Department of Computer

Science
Yale University

New Haven, CT 06520-8285

courtney@cs.yale.edu

Henrik Nilsson
Department of Computer

Science
Yale University

New Haven, CT 06520-8285

nilsson@cs.yale.edu

John Peterson
Department of Computer

Science
Yale University

New Haven, CT 06520-8285

peterson-
john@cs.yale.edu

ABSTRACT
Simulated worlds are a common (and highly lucrative) ap-
plication domain that stretches from detailed simulation of
physical systems to elaborate video game fantasies. We be-
lieve that Functional Reactive Programming (FRP) provides
just the right level of functionality to develop simulated
worlds in a concise, clear and modular way. We demonstrate
the use of FRP in this domain by presenting an implemen-
tation of the classic “Space Invaders” game in Yampa, our
most recent Haskell-embedded incarnation of FRP.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—functional languages, dataflow languages; I.6.2 [Sim-
ulation And Modeling]: Simulation Languages; I.6.8 [Sim-
ulation And Modeling]: Types of Simulation—continu-
ous, discrete event

General Terms
Languages

Keywords
FRP, Haskell, functional programming, synchronous dataflow
languages, modeling languages, hybrid modeling

1. INTRODUCTION
∗This material is based upon work supported in part by a
National Science Foundation (NSF) Graduate Research Fel-
lowship. We also gratefully acknowledge the support from
the Defense Advanced Research Projects Agency (DARPA)
MARS program. Any opinions, findings, conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the NSF
or DARPA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Haskell’03, August 25, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-758-3/03/0008 ...$5.00.

Functional Reactive Programming (FRP) integrates the
idea of time flow into the purely functional programming
style. By handling time flow in a uniform and pervasive
manner an application gains clarity and reliability. Just as
lazy evaluation can eliminate the need for complex control
structures, a uniform notion of time flow supports a more
declarative programming style that hides a complex under-
lying mechanism.

This paper was inspired by some gentle taunting on the
Haskell GUI list by George Russell [15]:

I have to say I’m very sceptical about things
like Fruit1 which rely on reactive animation, ever
since I set our students an exercise implementing
a simple space-invaders game in such a system,
and had no end of a job producing an example
solution. Things like getting an alien spaceship to
move slowly downward, moving randomly to the
left and right, and bouncing off the walls, turned
out to be a major headache. Also I think I had to
use ”error” to get the message out to the outside
world that the aliens had won. My suspicion is
that reactive animation works very nicely for the
examples constructed by reactive animation folk,
but not for my examples.

We believe two basic problems have led to the current
state of affairs. First, the original reactive animation systems
such as Fran [7, 6] and FAL [8] lacked features that were es-
sential to this application domain. As FRP has evolved we
have added a number of important capabilities, most no-
tably switching over dynamic collections of reactive entities,
that make this example much more manageable. Also, the
use of arrows [10] and the arrow notation [14] makes it easier
to write and understand FRP programs.

The second problem is one that we address in this paper:
the lack of good, practical examples of FRP-based code for
examples that are more complex than a simple paddleball
game. In this paper we show that Yampa, our current imple-
mentation of FRP, has the right functionality for this sort
of application by presenting an implementation of Space In-
vaders that illuminates the use of Yampa in this domain.
We are concerned with presenting Yampa from a user’s per-
spective: the design and implementation of Yampa has been
discussed elsewhere [9, 13].

After presenting our Space Invaders implementation, we
describe some of the advantages of Yampa over other imple-
1Fruit is a GUI toolkit based on Yampa [4].

Figure 1: Screen-shot of Space Invaders

mentation alternatives. In particular, the way Yampa allows
reactive entities to encapsulate state leads to highly modular
and extensible programs. We demonstrate this by showing
how features can be added to the game with very minor
changes to the source code.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the Space Invaders game, and serves as an
informal requirements specification. Section 3 reviews the
essential ideas of Yampa and the arrows syntax. Section 4
shows how reactive game objects can be specified simply and
concisely as signal functions in Yampa. Section 5 composes
the individual reactive components into a complete game us-
ing Yampa’s support for switching over dynamic collections.
The game is extended in section 6, with hardly any changes
required to the game structure. Section 7 then discusses al-
ternative implementation approaches and the advantages of
Yampa. Finally, sections 8 and 9 present related work and
our conclusions.

2. GAME PLAY
Our version of Space Invaders is based on the classic 2-D

arcade game of the same name. This section briefly describes
the game, and will serve as a highly informal requirements
specification. A screen-shot of our Space Invaders is shown
in figure 1.

Aliens are invading a planet in a galaxy far, far away, and
the task of the player is to defend against the invasion for
as long as possible. The invaders, in flying saucers, enter the
game at the top of the screen. Each alien craft has a small
engine allowing the ship to maneuver and counter the gravi-
tational pull. The thrust of the engine is directed by turning
the entire saucer, i.e. by adjusting its attitude. Aliens try
to maintain a constant downward landing speed, while ma-
neuvering to horizontal positions that are picked at random
every now and again.

The player controls a gun (depicted as a triangle) that
can move back and forth horizontally along the bottom of
the screen. The gun’s horizontal position is controlled (indi-
rectly) by the mouse.

Missiles are fired by pressing the mouse button. The initial
position and velocity of the missile is given by the position
and velocity of the gun when the gun is fired. The mis-
siles are subject to gravity, like other objects. To avoid self-
inflicted damage due to missiles falling back to the planet,
missiles self-destruct after a preset amount of time.

There are also two repelling force fields, one at each edge
of the screen, that effectively act as invisible walls.2 Mov-
ing objects that happens to “bump” into these fields will
experience a fully elastic collision and simply bounce back.

The shields of an alien saucer are depleted when the saucer
is hit by a missile. Should the shields become totally de-
pleted, the saucer blows up. Shields are slowly recharged
when below their maximal capacity, however. Whenever all
aliens in a wave of attack have been eliminated, the distant
mother ship will send a new wave of attackers, fiercer and
more numerous than the previous one. The game ends when
an alien successfully lands on the planet.

3. YAMPA
This section gives a short introduction to Yampa, a lan-

guage embedded in Haskell for describing reactive systems.
Yampa is based on ideas from Fran [7, 6] and FRP [18]. We
only give a brief summary of Yampa here; a more detailed
account is given in the Yampa programming tutorial [9].

3.1 Concepts
Yampa is based on two central concepts: signals and signal

functions. A signal is a function from time to a value:

Signalα ≈ Time → α

Time is continuous, and is represented as a non-negative real
number. The type parameter α specifies the type of values
carried by the signal. For example, if Point is the type of a
2-dimensional point, then the time-varying mouse position
might be represented with a value of type Signal Point.

A signal function is a function from Signal to Signal:

SFα β ≈ Signalα → Signal β

When a value of type SFα β is applied to an input sig-
nal of type Signalα, it produces an output signal of type
Signal β.

We can think of signals and signal functions using a simple
flow chart analogy. Line segments (or “wires”) represent sig-
nals, with arrowheads indicating the direction of flow. Boxes
(or “components”) represent signal functions, with one sig-
nal flowing in to the box’s input port and another signal
flowing out of the box’s output port.

3.2 Composing Signal Functions
Programming in Yampa consists of defining signal func-

tions compositionally using Yampa’s library of primitive sig-
nal functions and a set of combinators. Yampa’s signal func-
tions are an instance of the arrow framework proposed by
Hughes [10]. Three combinators from that framework are

2It is believed that they are remnants of an ancient defense
system put in place by the technologically advanced, myth-
ical Predecessors.

f

(a) arr f

������

(b) sf1 >>> sf2

��

(c) first sf

��

(d) loop sf

Figure 2: Some core signal function combinators.

arr, which lifts an ordinary function to a stateless signal
function, and the two signal function composition combina-
tors <<< and >>>:

arr :: (a -> b) -> SF a b

(<<<) :: SF b c -> SF a b -> SF a c

(>>>) :: SF a b -> SF b c -> SF a c

Yampa also provides a combination, the arrow-compose com-
binator:

(^<<) :: (b -> c) -> SF a b -> SF a c

Through the use of these and related plumbing combinators,
arbitrary signal function networks can be expressed. Figure 2
illustrates some of these combinators.

The core primitives all have simple, precise denotations in
terms of the conceptual model presented in section 3.1. For
example, arr is (conceptually) pointwise application:

arr :: (a -> b) -> SF a b

arr f = \s -> \t -> f (s t)

In order to ensure that signal functions are executable, we
require them to be causal : The output of a signal function
at time t is uniquely determined by the input signal on the
interval [0, t]. All primitive signal functions in Yampa are
causal and all combinators preserve causality.

3.3 Arrow Syntax
One benefit of using the arrow framework in Yampa is that

it allows us to use Paterson’s arrow notation [14]. Paterson’s
syntax (currently implemented as a preprocessor for Haskell)
effectively allows signals to be named, despite signals not
being first class values. This eliminates a substantial amount
of plumbing resulting in much more legible code. In fact, the
plumbing combinators will rarely be used in the examples in
this paper. In this syntax, an expression denoting a signal
function has the form:

proc pat -> do

pat1 <- sfexp1 -< exp1

pat2 <- sfexp2 -< exp2

. . .
patn <- sfexpn -< expn

returnA -< exp

Note that this is just syntactic sugar : the notation is trans-
lated into plain Haskell using the arrow combinators.

The keyword proc is analogous to the λ in λ-expressions,
pat and pat i are patterns binding signal variables pointwise
by matching on instantaneous signal values, exp and expi are
expressions defining instantaneous signal values, and sfexpi

are expressions denoting signal functions. The idea is that
the signal being defined pointwise by each expi is fed into the
corresponding signal function sfexpi, whose output is bound
pointwise in pati. The overall input to the signal function de-
noted by the proc-expression is bound by pat , and its output
signal is defined by the expression exp. The signal variables
bound in the patterns may occur in the signal value expres-
sions, but not in the signal function expressions (sfexpi).
An optional keyword rec, applied to a group of definitions,
permits signal variables to occur in expressions that textu-
ally precede the definition of the variable, allowing recursive
definitions (feedback loops). Finally,

let pat = exp

is shorthand for

pat <- identity -< exp

where identity is the identity signal function, allowing bind-
ing of instantaneous values in a straightforward way.

For a concrete example, consider the following:

sf = proc (a,b) -> do

c1 <- sf1 -< a

c2 <- sf2 -< b

c <- sf3 -< (c1,c2)

rec

d <- sf4 -< (b,c,d)

returnA -< (d,c)

Here we have bound the resulting signal function to the vari-
able sf, allowing it to be referred by name. Note the use of
the tuple pattern for splitting sf’s input into two “named
signals”, a and b. Also note the use of tuple expressions for
pairing signals, for example for feeding the pair of signals c1
and c2 to the signal function sf3.

3.4 Events and Event Sources
While some aspects of a program (such as the mouse po-

sition) are naturally modeled as continuous signals, other
aspects (such as the mouse button being pressed) are more
naturally modeled as discrete events. To model discrete events,
we introduce the Event type, isomorphic to Haskell’s Maybe
type:

data Event a = NoEvent | Event a

A signal function whose output signal is of type (Event T)

for some type T is called an event source. The value carried
with an event occurrence may be used to carry information
about the occurrence. The operator tag is often used to
associate such a value with an occurrence:

tag :: Event a -> b -> Event b

3.5 Switching
The structure of a Yampa system may evolve over time.

These structural changes are known as mode switches. This
is accomplished through a family of switching primitives
that use events to trigger changes in the connectivity of a
system. The simplest such primitive is switch:

switch ::

SF a (b,Event c) -> (c->SF a b) -> SF a b

Figure 3: System of interconnected signal functions
with varying structure

switch switches from one subordinate signal function into
another when a switching event occurs. Its first argument is
the signal function that initially is active. It outputs a pair of
signals. The first defines the overall output while the initial
signal function is active. The second signal carries the event
that will cause the switch to take place. Once the switch-
ing event occurs, switch applies its second argument to the
value tagged to the event and switches into the resulting
signal function.

Yampa also includes parallel switching constructs that
maintain dynamic collections of signal functions connected
in parallel. Signal functions can be added to or removed from
such a collection at runtime in response to events; see figure
3. The first class status of signal functions in combination
with switching over dynamic collections of signal functions
makes Yampa an unusually flexible language for describing
hybrid systems [13].

3.6 Animating Signal Functions
To actually execute a Yampa program we need some way

to connect the program’s input and output signals to the
external world. Yampa provides the function reactimate

(here slightly simplified) for this purpose:

reactimate :: IO (DTime,a) -- sense

-> (b -> IO ()) -- actuate

-> SF a b

-> IO ()

The first argument to reactimate (sense) is an IO action
that will obtain the next input sample along with the amount
of time elapsed (or “delta” time, DTime) since the previ-
ous sample. The second argument (actuate) is a function
that, given an output sample, produces an IO action that
will process the output sample in some way. The third ar-
gument is the signal function to be animated. Reactimate
approximates the continuous-time model presented here by
performing discrete sampling of the signal function, invoking
sense at the start and actuate at the end of each time step.
In the context of our video game, we use sense and actuate

functions which read an input event from the window system
and render an image on the screen, respectively.

4. PROGRAMMING REACTIVE GAME
OBJECTS

As described in section 2, there are three essential en-
tities or objects in the space invaders game: the gun, the
invaders and the missiles. They all react to external events
and stimuli, such as collisions with other objects and control
commands from the player; i.e., they are reactive. This sec-
tion explains how to develop and test such reactive objects

in Yampa by presenting an implementation of a somewhat
simplified gun. This serves as a good introduction to section
5, where the implementation of the real game is presented in
detail. However, this section also exemplifies a useful Yampa
development strategy where individual reactive objects are
first developed and tested in isolation, and then wired to-
gether into more complex systems. The last step may require
some further refinement of the individual object implemen-
tations, but the required changes are usually very minor.

4.1 Implementing a Gun
Each game object produces time-varying output (such as

its current position) and reacts to time-varying input (such
as the mouse-controlled pointer position). The gun, for ex-
ample, has a time-varying position and velocity and will
produce an output event to indicate that it has been fired.
On the input side, the gun’s position is controlled with the
mouse, and the gun firing event is emitted in response to
the mouse button being pressed. We can thus represent the
gun with the following types:

data SimpleGunState = SimpleGunState {

sgsPos :: Position2,

sgsVel :: Velocity2,

sgsFired :: Event ()

}

type SimpleGun = SF GameInput SimpleGunState

where GameInput is an abstract type representing a sample
of keyboard and mouse state, and Position2 and Velocity2

are type synonyms for 2-dimensional vectors.
A simple physical model and a control system for the gun

can be specified in just a few lines of Yampa code:

simpleGun :: Position2 -> SimpleGun

simpleGun (Point2 x0 y0) = proc gi -> do

(Point2 xd _) <- ptrPos -< gi

rec

-- Controller

let ad = 10 * (xd - x) - 5 * v

-- Physics

v <- integral -< clampAcc v ad

x <- (x0+) ^<< integral -< v

fire <- leftButtonPress -< gi

returnA -< SimpleGunState {

sgsPos = (Point2 x y0),

sgsVel = (vector2 v 0),

sgsFired = fire

}

In the first line in the body of simpleGun, the horizontal po-
sition of the pointer is extracted from the GameInput signal
using the ptrPos signal function (provided by the bindings
to the graphics library). We could, of course, simply define
the position of the gun to be that of the pointer. However,
to add some degree of physical realism, the model of the gun
includes inertia and adds bounds on the acceleration and ve-
locity. The position of the pointer is thus interpreted as the
gun’s desired horizontal position, xd, and a control system
is then used to compute the desired acceleration, ad, based
on the difference between the current and desired position
and the current velocity. The goal of the control system is

to make the gun reach the desired position quickly subject
to the physical constraints.3

The bounds on the acceleration and velocity are imposed
through the auxiliary function clampAcc:

clampAcc v ad =

let a = symLimit gunAccMax ad

in if (-gunSpeedMax) <= v && v <= gunSpeedMax

|| v < (-gunSpeedMax) && a > 0

|| v > gunSpeedMax && a < 0

then a

else 0

limit ll ul x = max ll (min ul x)

symLimit l = limit (-abs l) (abs l)

The equations for the velocity v and horizontal position x

are simply Newton’s laws of motion, stated in terms of in-
tegration:

integral :: VectorSpace a k => SF a a

4.2 Testing the Gun
Individual game objects such as simpleGun can be tested

in isolation using reactimate (described in section 3.6). To
test simpleGun we simply define an ordinary Haskell func-
tion to render a gun state as a visual image, and compose
(using >>>) simpleGun with a lifted (using arr) version of
this function:

renderGun :: SimpleGunState -> G.Graphic

renderGun = ...

gunTest :: IO ()

gunTest = runGame (simpleGun >>> arr renderGun)

runGame is defined using reactimate and suitable IO ac-
tions for reading an input event from the window system
and rendering a graphic on the screen. Executing gunTest

will open a window in which the gun can be positioned using
the mouse.

5. THE GAME

5.1 Game Structure
In section 4 we showed that individual game objects could

be implemented as signal functions. However, in order to
form a complete game, we will need a collection of game ob-
jects (the gun, aliens and missiles) that are all active simul-
taneously. We will also need some facility to add or remove
objects from the game in response to events such as missiles
being fired and missiles hitting targets. Thus the collection
has to be dynamic. Moreover, the implementation of the gun
in section 4 only reacted to external mouse input, whereas
in the actual game objects will also need to react to each
other.

The addition and deletion of signal functions constitute
structural changes of the network of interconnected active
signal functions. In Yampa, structural changes are effectu-
ated by means of switching between modes of continuous

3The control system coefficients in this example have not
been mathematically optimized.

operation. In particular, Yampa provides a family of par-
allel switching combinators that allow collections of signal
functions to be simultaneously switched in to and out of the
network of active signal functions as a group. When switched
in, the signal functions in these collections are connected in
parallel (hence the name parallel switch). The collections
are allowed to change at the points of switching, in effect
allowing them to be dynamic. Combining parallel switching
with feedback enables game objects to interact in arbitrary
ways. Figure 4 shows the resulting overall structure of the
game.

gun

alien

bullet

alien

...

killOrSpawn

ObjInput ObjOutput

} [ObjectOutput]

dpSwitch

route

Figure 4: Dynamic collection of game objects main-
tained by dpSwitch.

The design and implementation of Yampa’s parallel switch-
ing combinators is described in detail elsewhere [13]. Here
we will focus on how to use one particular parallel switching
combinator, dpSwitch, in the context of the Space Invaders
game. As illustrated in figured 4, there are two key aspects of
maintaining the dynamic collection which are under control
of the user of dpSwitch:

• The route function, which specifies how the exter-
nal input signal to the collection is distributed (or
“routed”) to individual members of the collection.

• The killOrSpawn function, which observes the output
of the collection (and possibly the external input sig-
nal) and determines when signal functions are added
to or removed from the collection.

In order to specify these two functions, we must first develop
a clear understanding of how the different members of the
collection interact with one another and the outside world,
and under what circumstances signal functions are added to
or removed from the collection. We will do that in the next
section.

5.2 The Object Type
The type of dpSwitch requires that all signal functions in

the dynamic collection to be maintained by dpSwitch have
a uniform type. For our Space Invaders game, we use the
following type for all game objects:

type Object = SF ObjInput ObjOutput

We must ensure that the types for the input and output
signal (ObjInput and ObjOutput) of this common type are

rich enough to allow us to implement all necessary interac-
tions between game objects. Based on a careful reading of
the requirements in section 2, a concise specification of the
interactions between game objects is as follows:

• A missile is spawned when the gun is fired.

• Missiles are destroyed when they hit an alien craft or
when they self-destruct after some finite time.

• An alien craft is destroyed when it has been sufficiently
damaged from a number of missile hits.

The analysis makes it clear that game objects react only
to collisions with other objects and external device input.
Hence we can define the ObjInput type as follows:

data ObjInput = ObjInput {

oiHit :: Event (),

oiGameInput :: GameInput

}

On the output side, we observe that there are really two
distinct kinds of outputs from game objects. First, there
is the observable object state, consisting of things like the
position and velocity of each object that must be presented
to the user and that must be available to determine object
interactions (such as collisions). Second, there are the events
that cause addition or removal of signal functions from the
dynamic collection, such as the gun being fired or an alien
being destroyed. This leads to the following type definition:

data ObjOutput = ObjOutput {

ooObsObjState :: !ObsObjState,

ooKillReq :: Event (),

ooSpawnReq :: Event [Object]

}

The ooObsObjState field contains the observable object
state of type ObsObjState:

data ObsObjState =

OOSGun {

oosPos :: !Position2,

oosVel :: !Velocity2,

oosRadius :: !Length,

}

| OOSMissile {

oosPos :: !Position2,

oosVel :: !Velocity2,

oosRadius :: !Length

}

| OOSAlien {

oosPos :: !Position2,

oosHdng :: !Heading,

oosVel :: !Velocity2,

oosRadius :: !Length

}

Note in the above that the constructors differentiate the dif-
ferent kinds of game objects. However, the oosPos, oosVel
and oosRadius fields are common to each alternative. This
simplifies the implementation of many functions (such as col-
lision detection), since collision detection can simply apply
oosPos and oosRadius to any observable object state value,
without concern for the kind of game object that produced
this value.

The ooKillReq and ooSpawnReq fields are object destruc-
tion and creation events, passed to killOrSpawn by dpSwitch.
On an occurrence of ooKillReq, the originating object is re-
moved from the collection. On an occurrence of ooSpawnReq,
the list of objects tagged to the event will be spliced in to
the dynamic collection. A list rather than a singleton object
is used for the sake of generality. For example, this allows
an exploding alien craft to spawn a list of debris.

5.3 Gun Behavior
We now turn to describing the behavior of the game ob-

jects. This section covers the gun; the next section deals
with the aliens. We leave out the missiles since that code is
basically a subset of the code describing the alien behavior.
Section 4 explained the basic idea behind modeling game ob-
jects using signal functions. With that as a starting point,
we have to develop objects that conform to the GameObject

type and interact properly with the world around them and
the object creation and destruction mechanism.

The resulting code for the gun is very similar to what we
have already seen:

gun :: Position2 -> Object

gun (Point2 x0 y0) = proc oi -> do

let gi = oiGameInput oi

(Point2 xd _) <- ptrPos -< gi

rec

-- Controller

let ad = 10 * (xd - x) - 5 * v

-- Physics

v <- integral -< clampAcc v ad

x <- (x0+) ^<< integral -< v

fire <- leftButtonPress -< gi

returnA -<

ObjOutput {

ooObsObjState = oosGun (Point2 x y0)

(vector2 v 0),

ooKillReq = noEvent,

ooSpawnReq =

fire ‘tag‘

[missile

(Point2 x (y0 + (gunHeight/2)))

(vector2 v missileInitialSpeed)]

}

missile :: Position2 -> Velocity2 -> Object

missile p0 v0 = proc oi -> do ...

The only significant change is the interaction with the object
creation and destruction mechanism. Note how noEvent is
used to specify that a gun never removes itself from the
dynamic collection, and how a signal function representing
a new missile is tagged onto the fire event, yielding an
object creation event.

5.4 Alien Behavior
This section presents the code describing the behavior of

aliens. Like the gun, the description contains a simple physi-
cal model along with a control system, the only difference be-
ing that aliens move in two dimensions. Unlike the gun, the
target for the control system is generated internally, partly

through a random process. Also unlike the gun, aliens can
be destroyed, which happens when their shields become de-
pleted.

alien :: RandomGen g =>

g -> Position2 -> Velocity -> Object

alien g p0 vyd = proc oi -> do

rec

-- Pick a desired horizontal position

rx <- noiseR (xMin, xMax) g -< ()

smpl <- occasionally g 5 () -< ()

xd <- hold (point2X p0) -< smpl ‘tag‘ rx

-- Controller

let axd = 5 * (xd - point2X p)

- 3 * (vector2X v)

ayd = 20 * (vyd - (vector2Y v))

ad = vector2 axd ayd

h = vector2Theta ad

-- Physics

let a = vector2Polar

(min alienAccMax

(vector2Rho ad))

h

vp <- iPre v0 -< v

ffi <- forceField -< (p, vp)

v <- (v0 ^+^) ^<< impulseIntegral

-< (gravity ^+^ a, ffi)

p <- (p0 .+^) ^<< integral -< v

-- Shields

sl <- shield -< oiHit oi

die <- edge -< sl <= 0

returnA -< ObjOutput {

ooObsObjState = oosAlien p h v,

ooKillReq = die,

ooSpawnReq = noEvent

}

where

v0 = zeroVector

Picking a desired position is accomplished by occasionally
sampling a noise signal. The signal function noiseR gener-
ates a random signal (noise) in the specified interval. The
signal function occasionally is an event source for which
the average event occurrence density can be specified. In this
case, events occur on average once every 5 seconds. Thus, on
each such occurrence, the noise source is sampled by tagging
its value rx to the sample event smpl. A piecewise contin-
uous signal indicating the desired horizontal position at all
points in time is then obtained by feeding the discrete noise
samples through the signal function hold. The typings for
these signal functions are as follows:

noiseR :: (RandomGen g, Random a) =>

(a,a) -> g -> SF () a

occasionally :: RandomGen g =>

g -> Time -> b -> SF a (Event b)

hold :: a -> SF (Event a) a

The output from the control system is the desired acceler-
ation ad, a 2-dimensional vector. The horizontal component
of this vector axd is computed based on the difference be-
tween the current horizontal position and desired horizontal

position, along with the current velocity. The vertical com-
ponent ayd is given by a simple proportional controller that
tries to maintain a constant vertical velocity by comparing
the desired vertical speed with the actual vertical speed. The
direction of the desired acceleration vector in turn gives the
attitude h of the alien craft.4

In the physical model, the real acceleration a is obtained
by limiting the desired acceleration according to the capabil-
ity of the craft. The velocity v and position p of the craft are
then given by integration of the sum of the acceleration from
the craft’s engines and the gravity in two steps according to
Newton’s laws of motion. The force field is modeled by the
auxiliary signal function forceField. It outputs an impul-
sive force ffi, modeled as an event, whenever an alien craft
bumps into the force field. The orientation and magnitude
of this impulsive force is such that the craft experiences an
instantaneous, fully elastic collision. The effect of impulsive
forces acting on the craft, a discontinuous change in velocity,
is taken into account through the use of the signal function
impulseIntegral rather than integral in the equation for
the velocity.5

impulseIntegral :: VectorSpace a k =>

SF (a, Event a) a

The shield is modeled by the auxiliary signal function
shield. Its output is the present shield level sl. Its input
are events indicating that the craft has been hit by a missile,
which causes the shield level to drop. Countering this, the
shield is recharged at a constant rate, up to a maximal level.
The shield level is monitored, and should it drop below zero,
an event die is generated that indicates that the craft has
been destroyed. The die event is defined using Yampa’s edge
detector primitive: edge :: SF Bool (Event ()).

Finally, the output signal is defined. The position p, atti-
tude h, and velocity v make up the observable object state.
The die event is made into a kill request, while noEvent

is used to specify that alien crafts do not spawn any other
objects.

5.5 Maintaining Dynamic Collections
We will now put the pieces we have developed thus far

together into a complete game, as outlined in figure 4. Thus
we have to use dpSwitch to maintain a dynamic collection of
game objects, we have to design the control mechanism for
adding and deleting objects (killAndSpawn), and we have
to set up the proper interconnection structure by means of
the dpSwitch routing function and feedback.
dpSwitch has the following signature:

dpSwitch :: Functor col =>

(forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)

The first argument is the routing function. Its purpose is
to pair up each running signal function in the collection
maintained by dpSwitch with the input it is going to see

4Rotational inertia is not modeled: it is assumed that the
alien craft can change direction instantaneously.
5The second author has developed a more systematic alter-
native based on Dirac impulses [12].

at each point in time. The rank-2 universal quantification
of sf renders the members of the collection opaque to the
routing function; all the routing function can do is spec-
ify how the input is distributed. The second argument is
the initial collection of signal functions. The third argument
is a signal function that observes the external input signal
and the output signals from the collection in order to pro-
duce a switching event. In our case, this is going to be the
killAndSpawn function alluded to in figure 4. The fourth
argument is a function that is invoked when the switch-
ing event occurs, yielding a new signal function to switch
into based on the collection of signal functions previously
running and the value carried by the switching event. This
allows the collection to be updated and then switched back
in, typically by employing dpSwitch again.

The collection argument to the function invoked on the
switching event is of particular interest: it captures the con-
tinuations of the signal functions running in the collection
maintained by dpSwitch at the time of the switching event,
thus making it possible to preserve their state across a switch.
Since the continuations are plain, ordinary signal functions,
they can be resumed, discarded, stored, or combined with
other signal functions.

In order to use dpSwitch, we first need to decide what kind
of collection to use. In cases where it is necessary to route
specific input to specific signal functions in the collection (as
opposed to broadcasting the same input to everyone), it is
often a good idea to “name” the signal functions in a way
that is invariant with respect to changes in the collection.
For our purposes, an association list will do just fine, al-
though we will augment it with a mechanism for generating
names automatically. We call this type an identity list, and
its type declaration along with the signatures of some useful
utility functions, whose purpose and implementation should
be fairly obvious, are as follows:

type ILKey = Int

data IL a = IL { ilNextKey :: ILKey,

ilAssocs :: [(ILKey, a)] }

emptyIL :: IL a

insertIL_ :: a -> IL a -> IL a

listToIL :: [a] -> IL a

elemsIL :: IL a -> [a]

assocsIL :: IL a -> [(ILKey, a)]

deleteIL :: ILKey -> IL a -> IL a

mapIL :: ((ILKey,a)->b) -> IL a -> IL b

IL is of course also an instance of Functor. Incidentally,
associating some extra state information with a collection,
like ilNextKey in this case, is often a quite useful pattern in
the context of dpSwitch.

Let us use dpSwitch to implement the core of the game:

gameCore :: IL Object

-> SF (GameInput, IL ObjOutput)

(IL ObjOutput)

gameCore objs =

dpSwitch route

objs

(arr killOrSpawn >>> notYet)

(\sfs’ f -> gameCore (f sfs’))

We will return to the details of the routing function and
killOrSpawn below. But the basic idea is that the switching

event from killOrSpawn carries a function that when applied
to the collection of continuations yields a new signal function
collection to switch into. That in turn is achieved by invoking
gameCore recursively on the new collection.
killOrSpawn in a plain Haskell function that is lifted to

the signal function level using arr. The resulting signal func-
tion is composed with notYet :: SF (Event a) (Event a)

that suppresses initial event occurrences. Thus the overall
result is a source of kill and spawn events that will not have
any occurrence at the point in time when it is first activated.
This is to prevent gameCore from getting stuck in an infinite
loop of switching. The need for this kind of construct typi-
cally arises when the source of the switching events simply
passes on events received on its input in a recursive setting
such as the one above. Since switching takes no time, the
new instance of the event source will see the exact same in-
put as the instance of event source that caused the switch,
and if that input is the actual switching event, a new switch
would be initiated immediately, and so on for ever.

The routing function is straightforward. Its task is to pass
on the game input to all game objects, and to detect colli-
sions between any pair of interacting game objects and pass
hit events to the objects involved in the collision:

route :: (GameInput, IL ObjOutput) -> IL sf

-> IL (ObjInput, sf)

route (gi,oos) objs = mapIL routeAux objs

where

routeAux (k, obj) =

(ObjInput {oiHit = if k ‘elem‘ hs

then Event ()

else noEvent,

oiGameInput = gi},

obj)

hs = hits (assocsIL

(fmap ooObsObjState oos))

route invokes the auxiliary function hits that computes a
list of keys of all objects that are involved in some collision.
For all game objects, it then checks if the key of that object
is contained in the list of colliding objects. If so, it sends a
collision event to the object, otherwise not. hits performs
its computation based on the fed-back object output. This
gives the current position and velocities for all game objects.
Two objects are said to collide if they partially overlap and
if they are approaching each other. However, alien crafts do
not collide in this version of the game.
killOrSpawn traverses the output from the game objects,

collecting all kill and spawn events. If any event occurs, a
switching event is generated that carries a function to up-
date the signal function collection accordingly:

killOrSpawn :: (a, IL ObjOutput)

->(Event (IL Object->IL Object))

killOrSpawn (_, oos) =

foldl (mergeBy (.)) noEvent es

where

es :: [Event (IL Object -> IL Object)]

es = [mergeBy (.)

(ooKillReq oo

‘tag‘ (deleteIL k))

(fmap (foldl (.) id

. map insertIL_)

(ooSpawnReq oo))

| (k,oo) <- assocsIL oos]

A kill event is turned into a function that removes the object
that requested to be deleted by partially applying deleteIL

to the key of the object to be removed. A spawn event is
turned into a function that inserts all objects in the spawn
request into the collection using insertIL . These individual
functions are then simply composed into a single collection
update function. We have found this approach to collection
updating to be quite useful and applicable in a wide range
of contexts [13].

5.6 Closing the Feedback Loop
We can now take one more step toward the finished game

by closing the feedback loop. We also add features for game
initialization and score keeping. The function game plays one
round of the game. It generates a terminating event carrying
the current (and possibly final) score either when the last
alien craft in the current wave of attack is destroyed, or when
the game is over due to an alien touch down:

game :: RandomGen g =>

g -> Int -> Velocity -> Score ->

SF GameInput ((Int, [ObsObjState]),

Event (Either Score Score))

game g nAliens vydAlien score0 = proc gi -> do

rec

oos <- gameCore objs0 -< (gi, oos)

score <- accumHold score0

-< aliensDied oos

gameOver <- edge -< alienLanded oos

newRound <- edge -< noAliensLeft oos

returnA -< ((score,

map ooObsObjState

(elemsIL oos)),

(newRound ‘tag‘ (Left score))

‘lMerge‘ (gameOver

‘tag‘ (Right score)))

where

objs0 =

listToIL

(gun (Point2 0 50)

: mkAliens g (xMin+d) 900 nAliens)

The central aspect of this function is the closing of the feed-
back loop using the recursive arrow syntax. The arguments
to game are a random number generator (used to seed the
signal functions representing the alien crafts), the number of
alien crafts in this wave of attack, the desired landing speed
of the aliens, and an initial score carried over from any pre-
ceding rounds. Score is kept by simply counting kill requests
from aliens in the object output, and events signaling a new
round and game over is obtained by applying edge detectors
to predicates over the object output looking for the absence
of alien crafts and the landing of an alien craft, respectively.

An unsatisfying aspect of the current design of the Yampa
switching combinators is that the exact choice of combinator
in gameCore (here dpSwitch) is critical to the design of game.
This point is discussed further in section 5.8.

5.7 Playing Multiple Rounds
Finally, a multi-round game can be built on top of game.

After each successful defeat of a wave of invaders, game is
reinvoked with more and faster alien crafts, passing on the
current score. Once an alien has landed, the game starts over
from the beginning.

multiRoundGame :: RandomGen g =>

g -> SF GameInput (Int, [ObsObjState])

multiRoundGame g = rgAux g nAliens0 vydAlien0 0

where

nAliens0 = 2

vydAlien0 = -10

rgAux g nAliens vydAlien score =

switch (game g’ nAliens vydAlien score)

$ \status ->

case status of

Left score’ ->

rgAux g’’

(nAliens+1)

(vydAlien-10)

score’

Right finalScore ->

rgAux g’’ nAliens0 vydAlien0 0

where

(g’, g’’) = split g

All that then remains is to connect the top-level signal
function to the outside world. This involves feeding in a
signal of mouse positions and button presses, and mapping
the output signal pointwise to a suitable graphic represen-
tation. The details are specific to the graphics systems that
are used. In this particular case we were using HGL, the
Haskell Graphics Library.

5.8 Which Switch?
Yampa provides a family of parallel switching combina-

tors. Two members are pSwitch and dpSwitch that have
exactly the same type signature, and as mentioned in sec-
tion 5.6, which one is chosen can have a significant impact
on the design of a program.

The difference between pSwitch and dpSwitch is that the
output from the switcher at the point of a switching event in
the former case is determined by the signal function being
switched into, which in turn usually means from the out-
puts of the signal functions in a new, updated collection,
whereas the output is the latter case is given by the output
from the signal functions in the old collection. This allows
dpSwitch to be non-strict in the switching event; i.e., the
output from dpSwitch at any point in time can be deter-
mined without demanding the switching event at that same
point in time. The “d” in the name of dpSwitch stands for
“delayed”, meaning that the effect of a switch cannot be ob-
served immediately. All Yampa switchers have delayed ver-
sions, and all those are non-strict in the switching event.

Employing a switcher that is non-strict in the switching
event may be enough to make it possible to close a feedback
loop without any unit delay on the feedback path. In our
case the lazy demand structure is such that this indeed is
the case, and hence there is no unit delay (iPre) on the
feedback path in game in section 5.6.

Using dpSwitch also means that the requests for removal
from the objects are going to be visible outside the switcher.
This was exploited for the score keeping mechanism. Had
pSwitch been used, we would only be able to observe the
output from the objects remaining after a switch. This does
of course not include the output from objects that just re-
moved themselves by emitting kill requests, and these re-
quests are exactly what is counted for keeping score. A more
robust alternative would be to associate extra state infor-

mation with the collection type (like the counter used for
naming in the identity list IL of section 5.5) and use that to
keep score.

6. AN EXTENSION
Our current version of the gun is rather unrealistic: the

ammunition supply is infinite, and a missile is fired whenever
the left mouse button is pressed. To make the game more
realistic, we extend the game by modifying the gun to add
a magazine with bounded capacity. The gun will only fire
a missile if there are missiles available in the magazine. We
assume that the magazine is reloaded with new missiles (up
to the magazine’s capacity) at some fixed rate.

As we will see, adding this extension requires only small,
localized changes to our existing program. We will revisit
this point in the next section, when we consider other ap-
proaches to implementing games in Haskell.

magazine ::

Int -> Frequency

-> SF (Event ()) (Int, Event ())

magazine n f = proc trigger -> do

reload <- repeatedly (1/f) () -< ()

(level,canFire)

<- accumHold (n,True) -<

(trigger ‘tag‘ dec)

‘lMerge‘ (reload ‘tag‘ inc)

returnA -< (level,

trigger ‘gate‘ canFire)

where

inc :: (Int,Bool) -> (Int, Bool)

inc (l,_) | l < n = (l + 1, l > 0)

| otherwise = (l, True)

dec :: (Int,Bool) -> (Int, Bool)

dec (l,_) | l > 0 = (l - 1, True)

| otherwise = (l, False)

First, reload is bound pointwise to an event signal that
will occur repeatedly every 1/f seconds. The lines that fol-
low implement a simple state machine, where the state con-
sists of level, an integer specifying the number of missiles
currently in the magazine, and canFire, a Boolean value de-
rived from level which specifies whether or not the gun will
actually fire in response to a trigger event. The state ma-
chine is implemented using Yampa’s accumHold primitive:

accumHold :: a -> SF (Event (a -> a)) a

The argument to accumHold is an initial state and the re-
sult is a signal function whose output signal is piecewise
constant. The signal function maintains a state value in-
ternally which is also made available as its output signal.
Whenever an event occurs on its input signal, the internal
state is updated by applying a state-to-state function carried
with the event occurrence. In this case, the input signal to
accumHold is formed by merging the external event signal
trigger with the internal event signal reload. An occur-
rence of these events is tagged to carry a function that mod-
ifies the state by decreasing or increasing the ammunition
level, respectively. Finally, the output signal of magazine is
simply a tuple consisting of the current ammunition level
and the trigger event gated by the internal boolean signal
canFire: trigger events from the input signal will only be
passed to the output signal when canFire is True.

Of course, we must extend the gun implementation from
section 5.3 to make use of the magazine. To do this, in the
body of gun we simply replace the line

fire <- leftButtonPress -< gi

with the lines:

trigger <- leftButtonPress -< gi

(level,fire) <- magazine 20 0.5 -< trigger

7. ALTERNATIVE IMPLEMENTATION
APPROACHES

Of course, there are any number of other ways one might
implement Space Invaders in Haskell without using Yampa’s
parallel switching framework. To consider just two:

• We could completely forego Yampa’s switching prim-
itives and dynamic collections framework. Instead of
representing individual game objects as signal func-
tions and composing then into a dynamic collection
with dpSwitch, we could define a single, monolithic
GameState type that would encapsulate the complete
state of the game (consisting of both the internal and
external state of the gun, all of the missiles and aliens).
Given such a GameState type, the game could be de-
fined entirely as a first-order signal function of type:

type Game = SF GameInput GameState

This Game type could be implemented using just basic
Yampa primitives without the need for any switching
constructs, just as we defined the SimpleGun itself in
section 4.

• Alternatively, we could forego the Yampa framework
entirely and implement our own top-level animation
framework. This framework would implement a top-
level loop to invoke a state transition function at reg-
ular intervals to process keyboard and mouse events
and render an image computed from this game state.
This is exactly the approach taken by Lüth [11] to im-
plement an asteroids game in Haskell using HGL.

We believe that using Yampa and its parallel switchers offers
important advantages over the above approaches.

First, developing individual game components as signal
functions provides the programmer with a natural way to
factor the game development task. Before diving into the
larger task of composing the components into a complete
game, the programmer can develop and test the individ-
ual game components in isolation, just as we did with the
SimpleGun in section 4. In fact, we took exactly this in-
cremental approach when developing the version of Space
Invaders presented here.

Second, an essential feature of signal functions is that they
can accumulate internal state that is not directly accessible
via their input or output signals, which makes signal func-
tions both modular and extensible. For example, while in-
dividual game objects expose their velocity on their output
signal, some of the objects also have an internal acceleration
signal that is hidden from the rest of the game. This feature
is also what enabled us to add the auto-refilling ammo mag-
azine to the gun. In the other implementation alternatives
discussed above, the internal state of each object would have

to be maintained as part of the monolithic GameState type.
While there are ways of carefully designing a GameState type
and state update functions so that each game entity can
maintain its own localized internal state, signal functions
are always modular in this sense.

8. RELATED WORK
As discussed in section 6, Christoph Lüth [11] presented

an implementation of asteroids in Haskell, used as part of
an introductory programming course. His implementation
was split into two parts: the top level animation loop (in the
IO monad) and a pure function of type Event -> State ->

State to process events. He provided students with a refer-
ence implementation that implemented just a single space
ship and basic animation and reactivity, and required the
students to implement other game objects and the interac-
tion between components, which they could do by writing
their own state transition function. We believe that Yampa
could be used in a similar context given a similar level of
hand-holding. In fact, the predecessor to Yampa was suc-
cessfully used in that way in an undergraduate robotics class
taught at Yale.

In their joint Ph.D. thesis [2], Hallgren and Carlsson out-
line an implementation of Space Invaders in Fudgets. Fud-
gets is based on discrete-time, asynchronous stream pro-
cessors, whereas Yampa is based on continuous-time, syn-
chronous signal processors, but the programming styles of
both systems are fundamentally similar. The particular Space
Invaders implementation in Fudgets outlined by Hallgren
and Carlsson is based on a static network of Fudgets, with a
fixed number of aliens and missiles. In contrast, our imple-
mentation is centered around dpSwitch, Yampa’s primitive
for higher-order dynamic collections of signal functions, and
aliens and missiles are added to and removed from our game
at runtime in response to events. Fudgets provides similar
functionality to dpSwitch through its dynListF primitive,
but dynListF only allows one Fudget to be added or re-
moved from the collection at a time, whereas dpSwitch pro-
vides synchronous bulk updates.

Another, rather different approach to modular decomposi-
tion of interactive applications and localized state handling
in a purely functional language is Clean’s Object I/O Sys-
tem [1]. Clean’s object I/O system is the basis for a sophisti-
cated (and highly polished) GUI library, as well as a library
for 2-D scrolling “platform” games. A fundamental differ-
ence between Clean’s objects and Yampa’s signal functions
is that every Clean object has access to a global, mutable
“World” that can be updated in response to events. These
updates are specified using callback functions whose type is
essentially s -> World -> (World,s) for some local state
type s; Clean’s uniqueness type system [17] ensures that
the world is used in a single-threaded way. Clean object
I/O depends on updates to the world value for inter-object
communication and to create and destroy objects dynam-
ically at runtime. In contrast, Yampa eschews all notions
of a global, mutable external “world”. Yampa requires all
component interactions to take place over connections made
explicitly with wiring combinators, and uses parallel switch-
ing combinators to express dynamic creation and removal
of signal functions. As has been argued elsewhere [4, 3] us-
ing explicit connections as the sole means of communication
between components enables the programmer to reason pre-
cisely about inter-component interactions; such reasoning is

simply not practical if every component can perform arbi-
trary side-effects on a shared “world”.

In all fairness to the original email message to the Haskell
list that prompted this work, there certainly were substan-
tial limitations in previous Functional Reactive Program-
ming systems that would have made it difficult or impos-
sible to implement a version of space invaders as sophisti-
cated as the one presented here. Fran [7, 6], the progenitor
of all subsequent FRP systems, provided the user with sig-
nals (called “behaviors” in Fran) as first-class values. At
first glance, this appears to be considerably more conve-
nient than Yampa’s combinator-based design, since wiring
in Fran can be expressed directly using Haskell’s function
application and recursion, and dynamic collections can be
formed using higher-order behaviors and ordinary Haskell
data types. Unfortunately, the implementation of Fran suf-
fered from a number of serious operational problems, most
notably time and space leaks [5]. A subsequent implemen-
tation, Hudak and Wan’s FRP library [18], attempted to
avoid these operational problems by blurring the distinction
between signals and signal functions. Unfortunately, this de-
sign made it impossible to maintain the internal state of a
behavior across a switch, which proved a severe limitation
when building complete applications. Subsequent attempts
to regain Fran’s expressive power (by the introduction of a
runningIn combinator) greatly complicated the library se-
mantics, particularly in the presence of recursion.

Yampa was developed as a successor to these previous
systems based on our experience attempting to use Fran
and FRP to construct graphical users interfaces and a large,
interactive robotics simulator. Yampa maintains a clear dis-
tinction between the notions of signal and signal function
and avoids many of the operational issues of earlier FRP sys-
tems by only allowing signal functions, not signals, as first
class entities. A potential drawback to the Yampa approach
is that all wiring must be expressed via combinators. How-
ever, we have found that the arrows syntactic sugar largely
ameliorates this issue.

Another successor to Fran, FranTk [16], provided func-
tionality equivalent to that of Yampa’s dpSwitch via what
it referred to as “Behavioral collections”. However, FranTk
depended crucially on an extended IO monad (the GUI
monad) for adding or removing behaviors from behavioral
collections. As noted in our earlier discussion of Clean’s I/O
system, an important goal of Yampa is to provide a flexi-
ble, higher-order data-flow language without appealing to a
global, mutable “World” type, whether provided explicitly
(as in Clean), or hidden behind a monadic interface.

9. CONCLUSIONS
FRP addresses application domains that have not been

traditionally associated with pure functional programming.
While the imperative features of Haskell can be used to im-
plement reactive networks of stateful objects in a traditional
style, this approach suffers from many of the same problems
that standard object oriented programming would. Using
Yampa, we have accomplished a number of things:

• Interfaces between the system components are fully
explicit. That is, every signal function makes it explicit
what stimuli it is reacting to and what effects it can
have on the outside world. Since the objects in this
system do not use the IO monad, they cannot interact

with each other in unexpected ways.

• Our system is modular in a way that allows significant
changes in the design of the constituent objects to be
made without requiring major structural changes to
the system.

• Time flow is managed in a uniform and synchronous
manner. This synchrony avoids event ordering anoma-
lies that characterize object oriented systems. Mutu-
ally recursive signals are represented in a simple and
intuitive manner.

• Dynamic collections of signal functions support a chang-
ing world in a simple and uniform manner. While pSwitch
and its siblings may seem daunting, they implement a
significant and error prone aspect of the system in a
semantically well-defined manner.

Of course, Yampa is not without flaws. For example, choos-
ing the right kind of switching combinator can be tricky,
as discussed in section 5.8, and the full implications of the
choice is not always readily apparent. And understanding
when to use the event suppression combinator notYet, or
where to employ the unit delay iPre, both critical for avoid-
ing infinite loops or black holes in certain cases, requires a
firm grasp of rather subtle details of the Yampa semantics.

It could also be argued that the syntax is not as intuitive
as it should be. While the arrow notation is a huge improve-
ment over the raw combinator style, it offers no help for the
specifics of Yampa like switching. Moreover, the Yampa ar-
row has properties that would allow a less “linear” syntax
than what is required for general arrows, closer to the stan-
dard function application notation. Indeed, Fran and earlier
versions of FRP did use such syntax, as discussed in section
8. For these reasons we are considering designing a Yampa
specific syntax, but for now we are content to use an existing
pre-processor.

Nevertheless, we feel that the Yampa style of program-
ming is a very good way to motivate students and others
familiar with imperative programming to learn basic func-
tional programming techniques and appreciate the expres-
siveness and generality of the purely functional program-
ming style.

10. REFERENCES
[1] Peter Achten and Rinus Plasmejer. Interactive

functional objects in clean. In Proc. of 9th
International Workshop on Implementation of
Functional Languages, IFL’97, volume 1467 of LNCS,
pages 304–321, September 1997.

[2] Magnus Carlsson and Thomas Hallgren. Fudgets –
Purely Functional Processes with Applications to
Graphical User Interfaces. PhD thesis, Department of
Computing Science, Chalmers University of
Technology, 1998.

[3] Antony Courtney. Functionally modeled user
interfaces. In Proceedings DSV-IS 2003, Eurographics
Workshop on Design, Specification and Verification of
Interactive Systems, 2003.

[4] Antony Courtney and Conal Elliott. Genuinely
functional user interfaces. In Proceedings of the 2001
ACM SIGPLAN Haskell Workshop, Firenze, Italy,
September 2001.

[5] Conal Elliott. Functional implementations of
continuous modelled animation. In Proceedings of
PLILP/ALP ’98. Springer-Verlag, 1998.

[6] Conal Elliott. An embedded modeling language
approach to interactive 3D and multimedia animation.
IEEE Transactions on Software Engineering,
25(3):291–308, May/June 1999. Special Section:
Domain-Specific Languages (DSL).

[7] Conal Elliott and Paul Hudak. Functional reactive
animation. In Proceedings of ICFP’97: International
Conference on Functional Programming, pages
163–173, June 1997.

[8] Paul Hudak. The Haskell School of Expression –
Learning Functional Programming through Multimedia.
Cambridge University Press, Cambridge, UK, 2000.

[9] Paul Hudak, Antony Courtney, Henrik Nilsson, and
John Peterson. Arrows, robots, and functional reactive
programming. In Johan Jeuring and Simon
Peyton Jones, editors, Advanced Functional
Programming, 4th International School 2002, volume
2638 of Lecture Notes in Computer Science, pages
159–187. Springer-Verlag, 2003.

[10] John Hughes. Generalising monads to arrows. Science
of Computer Programming, 37:67–111, May 2000.

[11] Christoph Lüth. Haskell in space. In Simon Thompson
Michael Hanus, Shriram Krishnamurthi, editor,
Functional and Declarative Programming in Education
(FDPE 2002), pages 67– 74. Technischer
Bereicht 0210, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität Kiel,
September 2002.

[12] Henrik Nilsson. Functional automatic differentiation
with dirac impulses. Accepted for publication at ICFP
2003, Uppsala, Sweden, 2003.

[13] Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In
Proceedings of the 2002 ACM SIGPLAN Haskell
Workshop (Haskell’02), pages 51–64, Pittsburgh,
Pennsylvania, USA, October 2002. ACM Press.

[14] Ross Paterson. A new notation for arrows. In
Proceedings of the 2001 ACM SIGPLAN International
Conference on Functional Programming, pages
229–240, Firenze, Italy, September 2001.

[15] George Russell. Email message, subject: Fruit & co,
February 2003. Message posted on the Haskell GUI
mailing list, available at http://www.haskell.org/-
pipermail/gui/2003-February/000140.html

[16] Meurig Sage. Frantk: A declarative gui system for
haskell. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming
(ICFP 2000), September 2000.

[17] S. Smetsers, E. Barendsen, M. v. Eekelen, and
R. Plasmeijer. Guaranteeing safe destructive updates
through a type system with uniqueness information for
graphs. Lecture Notes in Computer Science, 776, 1994.

[18] Zhanyong Wan and Paul Hudak. Functional reactive
programming from first principles. In Proceedings of
PLDI’01: Symposium on Programming Language
Design and Implementation, pages 242–252, June
2000.

